Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Shan, L. C., Ge, Y. S., and Du, A. M. (2020). A case study of large-amplitude ULF waves in the Martian foreshock. Earth Planet. Phys., 4(1), 45–50.doi: 10.26464/epp2020004

2020, 4(1): 45-50. doi: 10.26464/epp2020004

PLANETARY SCIENCES

A case study of large-amplitude ULF waves in the Martian foreshock

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China

3. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: LiCan Shan, lcshan@mail.iggcas.ac.cn

Received Date: 2019-11-09
Web Publishing Date: 2020-01-01

Foreshock ultralow frequency (ULF) waves constitute a significant physical phenomenon in the plasma environment of terrestrial planets. The occurrence of these waves, associated with backstreaming particles reflected and accelerated at the bow shock, implies specific conditions and properties of the shock and its foreshock. Using magnetic field and ion measurements from MAVEN, we report a clear event of ULF waves in the Martian foreshock. The interplanetary magnetic field connected to the Martian bow shock, forming a shock angle of ~51°. Indicating that this was a fast mode wave is the fact that ion density varied in phase with perturbations of the wave field. The peak frequency of the waves was about 0.040 Hz in the spacecraft frame, much lower than the local proton gyrofrequency (~0.088 Hz). The ULF waves had a propagation angle approximately 34° from ambient magnetic field and were accompanied by the whistler mode. The ULF waves displayed left-hand elliptical polarization with respect to the interplanetary magnetic field in the spacecraft frame. All these properties fit very well with foreshock waves excited by interactions between solar wind and backstreaming ions through right-hand beam instability.

Key words: foreshock ULF waves; Martian bow shock; backstreaming ions

Andrés, N., Gómez, D. O., Bertucci, C., Mazelle, C, and Dougherty, M. K. (2013). Saturn’s ULF wave foreshock boundary: Cassini observations. Planet. Space. Sci.(79–80), 64–75. https://doi.org/10.1016/j.pss.2013.01.014

Bertucci, C., Achilleos, N., Mazelle, C., Hospodarsky, G. B., Thomsen, M., Dougherty, M. K., and Kurth, W. (2007). Low-frequency waves in the foreshock of Saturn: First results from Cassini. J. Geophys. Res. Space Phys., 112(A9), A09219. https://doi.org/10.1029/2006JA012098

Bonifazi, C., and Moreno, G. (1981). Reflected and diffuse ions backstreaming from the Earth’s bow shock 2. Origin. J. Geophys. Res. Space Phys., 86(A6), 4405–4413. https://doi.org/10.1029/JA086iA06p04405

Burgess, D. (1997). What do we really know about upstream waves?. Adv. Space Res., 20(4-5), 673–682. https://doi.org/10.1016/S0273-1177(97)00455-9

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Eastwood, J. P., Balogh, A., Lucek, E. A., Mazelle, C., and Dandouras, I. (2005a). Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 1. Statistical properties. J. Geophys. Res. Space Phys., 110(A11), A11219. https://doi.org/10.1029/2004JA010617

Eastwood, J. P., Balogh, A., Lucek, E. A., Mazelle, C., and Dandouras, I. (2005b). Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 2. Oblique propagation. J. Geophys. Res. Space Phys., 110(A11), A11220. https://doi.org/10.1029/2004JA010618

Fairfield, D. H. (1969). Bow shock associated waves observed in the far upstream interplanetary medium. J. Geophys. Res., 74(14), 3541–3553. https://doi.org/10.1029/JA074i014p03541

Fairfield, D. H. (1974). Whistler waves observed upstream from collisionless shocks. J. Geophys. Res., 79(10), 1368–1378. https://doi.org/10.1029/JA079i010p01368

Fuselier, S. A., Thomsen, M. F., Gosling, J. T., Bame, S. J., and Russell, C. T. (1986). Gyrating and intermediate ion distributions upstream from the Earth’s bow shock. J. Geophys. Res. Space Phys., 91(A1), 91–99. https://doi.org/10.1029/JA091iA01p00091

Fuselier, S. A. (1995). Ion distributions in the Earth’s foreshock upstream from the bow shock. Adv. Space Res., 15(8-9), 43–52. https://doi.org/10.1016/0273-1177(94)00083-D

Gary, S. P., Gosling, J. T., and Forslund, D. W. (1981). The electromagnetic ion beam instability upstream of the Earth’s bow shock. J. Geophys. Res. Space Phys., 86(A8), 6691–6696. https://doi.org/10.1029/JA086iA08p06691

Gary, S. P. (1991). Electromagnetic ion/ion instabilities and their consequences in space plasmas: A review. Space Sci. Res., 56(3-4), 373–415. https://doi.org/10.1007/BF00196632

Gosling, J. T., Asbridge, J. R., Bame, S. J., Paschmann, G., and Sckopke, N. (1978). Observations of two distinct populations of bow shock ions in the upstream solar wind. Geophys. Res. Lett., 5(11), 957–960. https://doi.org/10.1029/GL005i011p00957

Greenstadt, E. W., Le, G., and Strangeway, R. J. (1995). ULF waves in the foreshock. Adv. Space Res., 15(8-9), 71–84. https://doi.org/10.1016/0273-1177(94)00087-H

Halekas, J. S., Taylor, E. R., Dalton, G., Johnson, G., Curtis, D. W., McFadden, J. P., Mitchell, D. L., Lin, R. P., and Jakosky, B. M. (2015). The solar wind ion analyzer for MAVEN. Space Sci. Rev., 195(1-4), 125–151. https://doi.org/10.1007/s11214-013-0029-z

Hoppe, M. M., Russell, C. T., Frank, L. A., Eastman, T. E., and Greenstadt, E. W. (1981). Upstream hydromagnetic waves and their association with backstreaming ion populations: ISEE-1 and -2 observations. J. Geophys. Res. Space Phys., 86(A6), 4471–4492. https://doi.org/10.1029/JA086iA06p04471

Hoppe, M. M., and Russell, C. T. (1983). Plasma rest frame frequencies and polarizations of the low-frequency upstream waves: ISEE 1 and 2 observations. J. Geophys. Res. Space Phys., 88(A3), 2021–2027. https://doi.org/10.1029/JA088iA03p02021

Hoshino, M., and Terasawa, T. (1985). Numerical study of the upstream wave excitation mechanism: 1. Nonlinear phase bunching of beam ions. J. Geophys. Res. Space Phys., 90(A1), 57–64. https://doi.org/10.1029/JA090iA01p00057

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Le, G., and Russell, C. T. (1992). A study of ULF wave foreshock morphology - I: ULF foreshock boundary. Planet. Space. Sci., 40(9), 1203–1213. https://doi.org/10.1016/0032-0633(92)90077-2

Le, G., and Russell, C. T. (1994). The morphology of ULF waves in the Earth’s foreshock. In M. J. Engebretson, et al. (Eds.), Solar Wind Sources of Magnetospheric Ultra-Low-Frequency Waves (pp. 87-98). Washington: AGU. https://doi.org/10.1029/GM081p0087222

Le, G., Chi, P. J., Blanco-Cano, X., Boardsen, S., Slavin, J. A., Anderson, B. J., and Korth, H. (2013). Upstream ultra-low frequency waves in Mercury’s foreshock region: MESSENGER magnetic field observations. J. Geophys. Res. Space Phys., 118(6), 2809–2823. https://doi.org/10.1002/jgra.50342

Mazelle, C., Le Quéau, D., and Meziane, K. (2000). Nonlinear wave-particle interaction upstream from the Earth’s bow shock. Nonlin. Proc. Geophys., 7(3–4), 185–190. https://doi.org/10.5194/npg-7-185-2000

Mazelle, C., Meziane, K., LeQuéau, D., Wilber, M., Eastwood, J. P., Rème, H., Sauvaud, J. A., Bosqued, J. M., Dandouras, I., … Balogh, A. (2003). Production of gyrating ions from nonlinear wave-particle interaction upstream from the Earth’s bow shock: A case study from Cluster-CIS. Planet. Space Sci., 51(12), 785–795. https://doi.org/10.1016/j.pss.2003.05.002

Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., … Slavin, J. (2004). Bow shock and upstream phenomena at Mars. Space Sci. Res., 111(1-2), 115–181. https://doi.org/10.1023/B:SPAC.0000032717.98679.d0

Mazelle, C., Meziane, K., Wilber, M., and Le Quéau, D. (2007). Wave-particle interaction in the terrestrial ion foreshock: new results from Cluster. AIP Conf. Proc., 932(1), 175–180. https://doi.org/10.1063/1.2778961

McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN SupraThermal and thermal ion compostion (STATIC) instrument. Space Sci. Rev., 195(1-4), 199–256. https://doi.org/10.1007/s11214-015-0175-6

Meziane, K., Mazelle, C., Lin, R. P., Le Quéau, D., Larson, D. E., Parks, G. K., and Lepping, R. P. (2001). Three-dimensional observations of gyrating ion distributions far upstream from the Earth’s bow shock and their association with low-frequency waves. J. Geophys. Res. Space Phys., 106(A4), 5731–5742. https://doi.org/10.1029/2000JA900079

Meziane, K., Wilber, M., Mazelle, C., LeQuéau, D., Kucharek, H., Lucek, E. A., Rème, H., Hamza, A. M., Sauvaud, J. A., … Lundin, R. N. (2004). Simultaneous observations of field-aligned beams and gyrating ions in the terrestrial foreshock. J. Geophys. Res. Space Phys., 109(A5), A05107. https://doi.org/10.1029/2003JA010374

Meziane, K., Wilber, M., Mazelle, C., Parks, G. K., and Hamza, A. M. (2005). A review of field-aligned beams observed upstream of the bow shock. AIP Conf. Proc., 781(1), 116–122. https://doi.org/10.1063/1.2032683

Meziane, K., Mazelle, C. X., Romanelli, N., Mitchell, D. L., Espley, J. R., Connerney, J. E. P., Hamza, A. M., Halekas, J., McFadden, J. P., and Jakosky, B. M. (2017). Martian electron foreshock from MAVEN observations. J. Geophys. Res. Space Phys., 122(2), 1531–1541. https://doi.org/10.1002/2016JA023282

Paschmann, G., Sckopke, N., Bame, S. J., Asbridge, J. R., Gosling, J. T., Russell, C. T., and Greenstadt, E. W. (1979). Association of low-frequency waves with suprathermal ions in the upstream solar wind. Geophys. Res. Lett., 6(3), 209–212. https://doi.org/10.1029/GL006i003p00209

Romanelli, N., Mazelle, C., and Meziane, K. (2018). Nonlinear wave-particle interaction: Implications for newborn planetary and backstreaming proton velocity distribution functions. J. Geophys. Res.: Space Phys., 123(2), 1100–1117. https://doi.org/10.1002/2017JA024691

Russell, C. T., Childers, D. D., and Coleman, Jr. P. J. (1971). Ogo 5 observations of upstream waves in the interplanetary medium: Discrete wave packets. J. Geophys. Res., 76(4), 845–861. https://doi.org/10.1029/JA076i004p00845

Schwartz, S. J., Paschmann, G., Sckopke, N., Bauer, T. M., Dunlop, M., Fazakerley, A. N., and Thomsen, M. F. (2000). Conditions for the formation of hot flow anomalies at Earth's bow shock. J. Geophys. Res. Space Phys., 105(A6), 12639–12650. https://doi.org/10.1029/1999JA000320

Shan, L. C., Lu, Q. M., Wu, M. Y., Gao, X. L., Huang, C., Zhang, T., and Wang, S. (2014). Transmission of large-amplitude ULF waves through a quasi-parallel shock at Venus. J. Geophys. Res. Space Phys., 119(1), 237–245. https://doi.org/10.1002/2013JA019396

Shan, L. C., Mazelle, C., Meziane, K., Delva, M., Lu, Q. M., Ge, Y. S., Du, A. M., and Zhang, T. L. (2016). Characteristics of quasi-monochromatic ULF waves in the Venusian foreshock. J. Geophys. Res. Space Phys., 121(8), 7385–7397. https://doi.org/10.1002/2016JA022876

Sonnerup, B. U. Ö., and Scherble, M. (1998). Minimum and Maximum Variance Analysis. In G. Paschmann, (Ed.), Analysis Methods for Multi-Spacecraft Data (pp. 185-220). Noordwijk, The Netherlands: ESA Publications Division.222

Thomsen, M. F., Gosling, J. T., Bame, S. J., and Russell, C. T. (1985). Gyrating ions and large-amplitude monochromatic MHD waves upstream of the Earth’s bow shock. J. Geophys. Res. Space Phys., 90(A1), 267–273. https://doi.org/10.1029/JA090iA01p00267

Tsurutani, B. T., Smith, E. J., Burton, M. E., Arballo, J. K., Galvan, C., Zhou, X. Y., Southwood, D. J., Dougherty, M. K., Glassmeier, K. H., … Chao, J. K. (2001). Oblique ‘1-Hz’ whistler mode waves in an electron foreshock: The Cassini near-Earth encounter. J. Geophys. Res. Space Phys., 106(A12), 30223–30238. https://doi.org/10.1029/2001JA900108

Vignes, D., Mazelle, C., Rème, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D. L., Cloutier, P., Crider, D. H., and Ness, N. F. (2000). The solar wind interaction with mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER experiment onboard mars global surveyor’. Geophys. Res. Lett., 27(1), 49–52. https://doi.org/10.1029/1999GL010703

Wilson III, L. B. (2016). Low frequency waves at and upstream of collisionless shocks. In A. Keiling, (Eds.), Low-frequency Waves in Space Plasmas (pp. 269-291). Washington: American Geophysical Union. https://doi.org/10.1002/9781119055006.ch16222

Winske, D., and Quest, K. B. (1986). Electromagnetic ion beam instabilities: Comparison of one- and two-dimensional simulations. J. Geophys. Res. Space Phys., 91(A8), 8789–8797. https://doi.org/10.1029/JA091iA08p08789

Yamauchi, M., Futaana, Y., Fedorov, A., Frahm, R. A., Winningham, J. D., Dubinin, E., Lundin, R., Barabash, S., Holmström, M., … Fraenz, M. (2011). Comparison of accelerated ion populations observed upstream of the bow shocks at Venus and Mars. Ann. Geophys., 29(3), 511–528. https://doi.org/10.5194/angeo-29-511-2011

[1]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[2]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[3]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[4]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[5]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics. doi: 10.26464/epp2020013

[6]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[7]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics. doi: 10.26464/epp2020025

[8]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[9]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[10]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[11]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[12]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[13]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[14]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[15]

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

[16]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[17]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[18]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics. doi: 10.26464/epp2020024

[19]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A case study of large-amplitude ULF waves in the Martian foreshock

LiCan Shan, YaSong Ge, AiMin Du