Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, Y. M., Jia, X. Z., Wang, C. B., Wang, S., and Krupar, V. (2020). Locating the source field lines of Jovian decametric radio emissions. Earth Planet. Phys., 4(2), 95–104doi: 10.26464/epp2020015

2020, 4(2): 95-104. doi: 10.26464/epp2020015

PLANETARY SCIENCES

Locating the source field lines of Jovian decametric radio emissions

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

3. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China,  Hefei 230026, China

4. 

Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109-2143, USA

5. 

Universities Space Research Association, Columbia, Maryland, USA

6. 

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

7. 

Department of Space Physics, Institute of Atmospheric Physics, The Czech Academy of Sciences, Prague, Czech Republic

Corresponding author: YuMing Wang, ymwang@ustc.edu.cn

Received Date: 2019-08-19
Web Publishing Date: 2020-03-01

Decametric (DAM) radio emissions are one of the main windows through which one can reveal and understand the Jovian magnetospheric dynamics and its interaction with the moons. DAMs are generated by energetic electrons through cyclotron-maser instability. For Io (the most active moon) related DAMs, the energetic electrons are sourced from Io volcanic activities, and quickly trapped by neighboring Jovian magnetic field. To properly interpret the physical processes behind DAMs, it is important to precisely locate the source field lines from which DAMs are emitted. Following the work by Hess et al. (2008, 2010), we develop a method to locate the source region as well as the associated field lines for any given DAM emission recorded in a radio dynamic spectrum by, e.g., Wind/WAVES or STEREO/WAVES. The field lines are calculated by the state-of-art analytical model, called JRM09 (Connerney et al., 2018). By using this method, we may also derive the emission cone angle and the energy of associated electrons. If multiple radio instruments at different perspectives observe the same DAM event, the evolution of its source region and associated field lines is able to be revealed. We apply the method to an Io-DAM event, and find that the method is valid and reliable. Some physical processes behind the DAM event are also discussed.

Key words: radio decametric emissions; Jovian magnetosphere; energetic electrons

Bagenal, F. (1994). Empirical model of the Io plasma torus: Voyager measurements. J. Geophys. Res.: Space Phys., 99(A6), 11043–11062. https://doi.org/10.1029/93JA02908

Bolton, S. J., Lunine, J., Stevenson, D., Connerney, J. E. P., Levin, S., Owen, T. C., Bagenal, F., Gautier, D., Ingersoll, A. P., … Thorpe, R. (2017). The Juno mission. Space Sci. Rev., 213(1-4), 5–37. https://doi.org/10.1007/s11214-017-0429-6

Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Saur, J., and Jacobsen, S. (2008). UV Io footprint leading spot: A key feature for understanding the UV Io footprint multiplicity?. Geophys. Res. Lett., 35(5), L05107. https://doi.org/10.1029/2007GL032418

Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., and Clarke, J. T. (2009). The Io UV footprint: Location, inter-spot distances and tail vertical extent. J. Geophys. Res.: Space Phys., 114(A7), A07224. https://doi.org/10.1029/2009JA014312

Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., … Hoang, S. S. (1995). WAVEs: The radio and plasma wave investigation on the wind spacecraft. Space Sci. Rev., 71(1-4), 231–263. https://doi.org/10.1007/BF00751331

Bougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., … Zouganelis, I. (2008). S/WAVES: The radio and plasma wave investigation on the STEREO mission. Space Sci. Rev., 136(1-4), 487–528. https://doi.org/10.1007/s11214-007-9298-8

Carr, T. D., Desch, M. D., and Alexander, J. K. (1983). Phenomenology of magnetospheric radio emissions. In A. J. Dessler (Ed.), Physics of Jovian Magnetosphere (pp. 226–284). New York: Cambridge University Press.222

Connerney, J. E. P. (1992). Doing more with Jupiter's magnetic field. In H. O. Rucker, et al. (Eds.), Planetary Radio Emissions III (pp. 13–33). Vienna: Austrian Academy of Science.222

Connerney, J. E. P., Acuña, M. H., and Ness, N. F. (1981). Modeling the Jovian current sheet and inner magnetosphere. J. Geophys. Res.: Space Phys., 86(A10), 8370–8384. https://doi.org/10.1029/JA086iA10p08370

Connerney, J. E. P., Kotsiaros, S., Oliversen, R. J., Espley, J. R., Joergensen, J. L., Joergensen, P. S., Merayo, J. M. G., Herceg, M., Bloxham, J., …Levin, S. M. (2018). A new model of Jupiter's magnetic field from Juno's first nine orbits. Geophys. Res. Lett., 45(6), 2590–2596. https://doi.org/10.1002/2018GL077312

Cowley, S. W. H., and Bunce, E. J. (2001). Origin of the main auroral oval in Jupiter's coupled magnetosphere-ionosphere system. Planet. Space Sci., 49(10-11), 1067–1088. https://doi.org/10.1016/S0032-0633(00)00167-7

Dulk, G. A., Leblanc, Y., and Lecacheux, A. (1994). The complete polarization state of Io-related radio storms from Jupiter: A statistical study. Astron. Astrophys., 286, 683–700.

Giampieri, G., and Dougherty, M. K. (2004). Modelling of the ring current in Saturn’s magnetosphere. Ann. Geophys., 22(2), 653–659. https://doi.org/10.5194/angeo-22-653-2004

Grodent, D., Bonfond, B., Gérard, J. C., Radioti, A., Gustin, J., Clarke, J. T., Nichols, J., and Connerney, J. E. P. (2008). Auroral evidence of a localized magnetic anomaly in Jupiter's northern hemisphere. J. Geophys. Res.: Space Phys., 113(A9), A09201. https://doi.org/10.1029/2008JA013185

Hess, S., Zarka, P., and Mottez, F. (2007). Io-Jupiter interaction, millisecond bursts and field-aligned potentials. Planet. Space Sci., 55(1–2), 89–99. https://doi.org/10.1016/j.pss.2006.05.016

Hess, S., Cecconi, B., and Zarka, P. (2008). Modeling of Io-Jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett., 35(13), L13107. https://doi.org/10.1029/2008GL033656

Hess, S. L. G., Pétin, A., Zarka, P., Bonfond, B., and Cecconi, B. (2010). Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci., 58(10), 1188–1198. https://doi.org/10.1016/j.pss.2010.04.011

Hess, S. L. G., Echer, E., Zarka, P., Lamy, L., and Delamere, P. A. (2014). Multi-instrument study of the Jovian radio emissions triggered by solar wind shocks and inferred magnetospheric subcorotation rates. Planet. Space Sci., 99, 136–148. https://doi.org/10.1016/j.pss.2014.05.015

Hill, T. W., Dessler, A. J., and Goertz, C. K. (1983). Magnetospheric models. In A. J. Dessler (Ed.), Physics of the Jovian Magnetosphere (pp. 353–394). Cambridge: Cambridge University Press.222

Imai, K., Wang, L. Y., and Can, T. D. (1997). Modeling Jupiter's decametric modulation lanes. J. Geophys. Res.: Space Phys., 102(A4), 7127–7136. https://doi.org/10.1029/96JA03960

Imai, K., Riihimaa, J. J., Reyes, F., and Carr, T. D. (2002). Measurement of Jupiter’s decametric radio source parameters by the modulation lane method. J. Geophys. Res.: Space Phys., 107(A6), SMP 12-1–SMP 12-11. https://doi.org/10.1029/2001JA007555

Jacobsen, S., Neubauer, F. M., Saur, J., and Schilling, N. (2007). Io's nonlinear MHD-wave field in the heterogeneous Jovian magnetosphere. Geophys. Res. Lett., 34(10), L10202. https://doi.org/10.1029/2006GL029187

Kaiser, M. L., Zarka, P., Kurth, W. S., Hospodarsky, G. B., and Gurnett, D. A. (2000). Cassini and Wind stereoscopic observations of Jovian nonthermal radio emissions: Measurement of beam widths. J. Geophys. Res.: Space Phys., 105(A7), 16053–16062. https://doi.org/10.1029/1999JA000414

Kivelson, M. G., and Southwood, D. J. (2005). Dynamical consequences of two modes of centrifugal instability in Jupiter's outer magnetosphere. J. Geophys. Res.: Space Phys., 110(A12), A12209. https://doi.org/10.1029/2005JA011176

Kivelson, M. G., Bagenal, F., Kurth, W. S., Neubauer, F. M., Paranicas, C., and Saur, J. (2004). Magnetospheric interactions with satellites. In F. Bagenal et al. (Ed.), Jupiter: The Planet, Satellites and Magnetosphere (pp. 513–536). Cambridge: Cambridge University Press.222

Lamy, L., Zarka, P., Cecconi, B., Hess, S., and Prangé, R. (2008). Modeling of Saturn kilometric radiation arcs and equatorial shadow zone. J. Geophys. Res.: Space Phys., 113(A10), A10213. https://doi.org/10.1029/2008JA013464

Lamy, L., Prangé, R., Pryor, W., Gustin, J., Badman, S. V., Melin, H., Stallard, T., Mitchell, D. G., and Brandt, P. C. (2013). Multispectral simultaneous diagnosis of Saturn's aurorae throughout a planetary rotation. J. Geophys. Res.: Space Phys., 118(8), 4817–4843. https://doi.org/10.1002/jgra.50404

Lecacheux, A. (1988). Polarization aspects from planetary radio emissions. In H. O. Rucker, et al. (Eds.), Planetary Radio Emissions II (pp. 311–326). Vienna: Austrian Academy of Science.222

Panchenko, M., and Rucker, H. O. (2016). Estimation of emission cone wall thickness of Jupiter's decametric radio emission using stereoscopic STEREO/WAVES observations. Astron. Astrophys., 596, A18. https://doi.org/10.1051/0004-6361/201527397

Queinnec, J., and Zarka, P. (1998). Io-controlled decameter arcs and Io-Jupiter interaction. J. Geophys. Res.: Space Phys., 103(A11), 26649–26666. https://doi.org/10.1029/98JA02435

Ramachandran, P., and Varoquaux, G. (2011). Mayavi: 3D visualization of scientific data. Comput. Sci. Eng., 13(2), 40–51. https://doi.org/10.1109/MCSE.2011.35

Riihimaa, J. J. (1968). Structured events in the dynamic spectra of Jupiter’s decametric radio emission. Astron. J., 73, 265–270. https://doi.org/10.1086/110627

Riihimaa, J. J. (1978). L-bursts in Jupiter’s decametric radio spectra. Astrophys. Space Sci., 56(2), 503–518. https://doi.org/10.1007/BF01879581

Saur, J., Neubauer, F. M., Strobel, D. F., and Summers, M. E. (1999). Three-dimensional plasma simulation of Io's interaction with the Io plasma torus: Asymmetric plasma flow. J. Geophys. Res.: Space Phys., 104(A11), 25105–25126. https://doi.org/10.1029/1999JA900304

Schneider, N. M., and Bagenal, F. (2007). Io's neutral clouds, plasma torus, magnetospheric interactions. In R. M. C. Lopes, et al. (Eds.), Io after Galileo (pp. 265–286). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-540-48841-5_11222

Treumann, R. A. (2006). The electron-cyclotron maser for astrophysical application. Astron. Astrophys. Rev., 13(4), 229–315. https://doi.org/10.1007/s00159-006-0001-y

Waite, J. H. Jr., Clarke, J. T., Cravens, T. E., and Hammond, C. M. (1988). The Jovian aurora: Electron or ion precipitation?. J. Geophys. Res.: Space Phys., 93(A7), 7244–7250. https://doi.org/10.1029/JA093iA07p07244

Wu, C. S., and Lee, L. C. (1979). A theory of terrestrial kilometric radiation. Astrophys. J., 230, 621–626. https://doi.org/10.1086/157120

Zarka, P. (1998). Auroral radio emissions at the outer planets: Observations and theories. J. Geophys. Res.: Plants, 103(E9), 20159–20194. https://doi.org/10.1029/98JE01323

Zarka, P., Farges, T., Ryabov, B. P., Abada-Simon, M., and Denis, L. (1996). A scenario for Jovian S-bursts. Geophys. Res. Lett., 23(2), 125–128. https://doi.org/10.1029/95GL03780

[1]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[2]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[3]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[4]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[5]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[6]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[7]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[8]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[9]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[10]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[11]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[12]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[13]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[14]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[15]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[16]

Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Locating the source field lines of Jovian decametric radio emissions

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar