Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics. http://doi.org/10.26464/epp2022036

doi: 10.26464/epp2022036

A machine learning-based electron density (MLED) model in the inner magnetosphere

1 School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha, China;

2 Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha, China

Fund Project: This work is supported by the National Natural Science Foundation of China grants 42074198, 41774194, 41974212 and 42004141, Natural Science Foundation of Hunan Province 2021JJ20010, Science and Technology Innovation Program of Hunan Province 2021RC3098, and Foundation of Education Bureau of Hunan Province for Distinguished Young Scientists 20B004. All the Van Allen Probes data are publicly available at https://cdaweb.gsfc.nasa.gov/pub/data/rbsp/. The OMNI data are obtained online (https://spdf.gsfc.nasa.gov/pub/data/omni/).

The plasma density is an important factor in determining wave-particle interaction in the magnetosphere. We develop a machine learning-based electron density (MLED) model in the inner magnetosphere using a data set of electron density from Van Allen Probes between September 25, 2012 and August 30, 2019. This MLED model is a physics-based nonlinear network that employs fundamental physical principles to represent the variation of electron density. It predicts the plasmapause location under different geomagnetic activities and models the electron density of the plasmasphere and trough separately. We train the model using gradient descent and backpropagation algorithms, which can be widely used to deal effectively with nonlinear relationships among physical quantities in space plasma environments. The model gives explicit expressions with few parameters and describes the association of electron density with geomagnetic activity, solar cycle, and seasonal effects. Under various geomagnetic conditions, the electron densities calculated by this model agree well with the observation and provide a good description of the plasmapause movement. This MLED model, which can be easily incorporated into the previously developed radiation belt model, would be very helpful in modeling and forecasting the radiation belt electron dynamics.

Key words: background electron density, inner magnetosphere, machine learning, Van Allen Probes observation

Bortnik, J., W. Li, R. M. Thorne, and V. Angelopoulos (2016), A unified approach to inner magnetospheric state prediction, J. Geophys. Res. Space Physics, 121, 2423– 2430, doi:10.1002/2015JA021733. Bortnik, J., et al. (2018), Artificial Neural Networks for Determining Magnetospheric Conditions, in Machine Learning Techniques for Space Weather, 279-300 pp., Elsevier, doi:10.1016/B978-0-12-811788-0.00011-1. Carpenter, D. L., and R. R. Anderson (1992), An isee/whistier model of equatorial electron density in the magnetosphere, J. Geophys. Res., 97, 1097. Chappell, C. R. (1972), Recent satellite measurements of the morphology and dynamics of the plasmasphere, Rev. Geophys., 10, 951. Chen, L., R. M. Thorne, and R. B. Horne (2009), Simulation of EMIC wave excitation in a model magnetosphere including structured high-density plumes, J. Geophys. Res., 114, A07,221, doi:10.1029/2009JA014204. Chu, X., J. Bortnik, W. Li, Q. Ma, V. Angelopoulos, and R. M. Thorne (2017a), Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network, J. Geophys. Res. Space Physics, 122, 7118–7129, doi:10.1002/2017JA023948. Chu, X., J. Bortnik, W. Li, Q. Ma, R. Denton, and C. Yue (2017b), A neural network model of three-dimensional dynamic electron density in the inner magnetosphere, Journal of Geophysical Research: Space Physics, 122, 9183–9197, doi:10.1002/2017JA024464. Darrouzet, F., J. De Keyser, P. M. E. Décréau, F. El Lemdani-Mazouz, and X. Vallières (2008), Statistical analysis of plasmaspheric plumes with Cluster/WHISPER observations, Annales Geophysicae, 26, 2403–2417, doi:10.5194/angeo-26-2403-2008. Escoubet, C. P., A. Pedersen, R. Schmidt, and P. A. Lindqvist (1997), Density in the magnetosphere inferred from ISEE 1 spacecraft potential, J. Geophys. Res., 102(A8), 17,595–17,609, doi:10.1029/97JA00290. Fu, H. S., J. Tu, P. Song, J. B. Cao, B. W. Reinisch, and B. Yang (2010a), The nightside‐to‐dayside evolution of the inner magnetosphere: Imager for Magnetopause‐to‐Aurora Global Exploration Radio Plasma Imager observations, J. Geophys. Res., 115, A04213, doi:10.1029/2009JA014668. Fu, H. S., J. Tu, J. B. Cao, P. Song, B. W. Reinisch, D. L. Gallagher, and B. Yang (2010b), IMAGE and DMSP observations of a density trough inside the plasmasphere, J. Geophys. Res., 115, A07227, doi:10.1029/2009JA015104. Gallagher, D. L., P. D. Craven, R. H. Comfort, and T. E. Moore (1995), One the azimuthal variation fo core plasma in the equatorial magnetosphere, J. Geophys. Res., 100, 23,597. Gallagher, D. L., P. D. Craven, and R. H. Comfort (2000), Global core plasma model, J. Geophys. Res., 105, 18,819. Glauert, S. A., and R. B. Horne (2005), Calculation of pitch angle and energy diffusion coefficients with the PADIE code, J. Geophys. Res., 110, A04,206, doi: 10.1029/2004JA010851. Goldstein, J., B. R. Sandel, M. F. Thomsen, M. Spasojević, and P. H. Reiff (2004), Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes, Journal of Geophysical Research, 109, A03202, doi:10.1029/2003JA010281, 2004. Goldstein, J., M. F. Thomsen, and A. DeJong (2014), In situ signatures of residual plasmaspheric plumes: Observations and simulation, Journal of Geophysical Research: Space Physics, 119, 4706-4722, doi:10.1002/2014JA019953. Guan, C. Y., X. J. Shang, Y. Q. Xie, C. Yang, S. Zhang, S. Liu, and F. L. Xiao (2020), Generation of simultaneous H+ and He+ band EMIC waves in the nightside radiation belt, Sci China Tech Sci, 63, 2369–2374, doi:10.1007/s11431-019- 1545-6. Guo, M. Y., Q. H. Zhou, F. L. Xiao, S. Liu, Y. H. He, and C. Yang (2020), Upward propagation of lightning-generated whistler waves into the radiation belts, Sci China Tech Sci, 63, 243–248, doi:10.1007/s11431-018-9486-9. He, J. B., et al. (2021), The influence of various frequency chorus waves on electron dynamics in radiation belts, Sci China Tech Sci, 64, 890–897, doi:10.1007/s11431-020-1750-6. Kurth, W. S., S. D. Pascuale, J. B. Faden, C. A. Kletzing, G. B. Hospodarsky, S. Thaller, and J. R. Wygant (2015), Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes, J. Geophys. Res. Space Physics, 120, 904–914, doi:10.1002/2014JA020857. Larsen, B. A., D. M. Klumpar, and C. Gurgiolo (2007), Correlation between plasmapause position and solar wind parameters, J. Atmos. Sol.-Terr. Phys., 69(3), 334–340, doi:10.1016/j.jastp.2006.06.017. Meredith, N. P., R. B. Horne, A. Sicard-Piet, D. Boscher, K. H. Yearby, W. Li, and R. M. Thorne (2012), Global model of lower band and upper band chorus from multiple satellite observations, J. Geophys. Res., 117, A10,225, doi:10.1029/2012JA017978. O’Brien, T. P., and M. B. Moldwin (2003), Empirical plasmapause models from magnetic indices, Geophys. Res. Lett., 30(4), 1152, doi:10.1029/2002GL016007. Ojala, M., and G. C. Garriga (2009), Permutation tests for studying classifier performance, in 2009 Ninth IEEE International Conference on Data Mining, pp. 908–913, doi:10.1109/ICDM.2009.108. Robert, H.-N. (1989), Theory of the backpropagation neural network, in International 1989 Joint Conference on Neural Networks, pp. 593–605 vol.1, doi:10.1109/IJCNN.1989.118638. Rumelhart, D., G. Hinton, and R. Williams (1986), Learning representations by backpropagating errors, Nature, 323, 533–536, doi:10.1038/323533a0. Sheeley, B. W., M. B. Moldwin, H. K. Rassoul, and R. R. Anderson (2001), An empirical plasmasphere and trough density model: CRRES observations, J. Geophys. Res., 106, 25,631. Shprits, Y. Y., A. C. Kellerman, A. Y. Drozdov, H. E. Spence, G. D. Reeves, and D. N. Baker (2015), Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations, Geophysical Research Letters, 42, 9600–9608, doi:10.1002/2015GL065230. Su, Z., F. Xiao, H. Zheng, and S. Wang (2010), STEERB: A three-dimensional code for storm-time evolution of electron radiation belt, J. Geophys. Res., 115, A09,208, doi:10.1029/2009JA015210. Su, Z., N. Liu, H. Zheng, Y. Wang, and S. Wang (2018), Multipoint observations of nightside plasmaspheric hiss generated by substorm-injected electrons, Geophysical Research Letters, 45, 10921-10932, doi:10.1029/2018GL079927. Thorne, R. M., E. J. Smith, R. K. Burton, and R. E. Holzer (1973), Plasmaspheric hiss, J. Geophys. Res., 78, 1581–1596, doi:10.1029/JA078i010p01581. Xiao, F., Z. Su, H. Zheng, and S. Wang (2009), Modeling of outer radiation belt electrons by multidimensional diffusion process, J. Geophys. Res., 114, A03,201, doi:10.1029/2008JA013580. Xiao, F., Z. Su, H. Zheng, and S. Wang (2010), Three-dimensional simulations of outer radiation belt electron dynamics including cross diffusion terms, J. Geophys. Res., 115, A05,216, doi:10.1029/2009JA014541. Xiao, F., Q. Zhou, Z. He, C. Yang, Y. He, and L. Tang (2013), Magnetosonic wave instability by proton ring distributions: Simultaneous data and modeling, J. Geophys. Res. Space Physics, 118, 1654, doi:10.1002/jgra.50401. Xiao, F., et al. (2015), Wave-driven butterfly distribution of van allen belt relativistic electrons, Nat. Commun., 6, 8590, doi:10.1038/ncomms9590. Yang, C., Z. Q. Wang, F. L. Xiao, Z. G. He, Y. Q. Xie, S. Zhang, Y. H. He, S. Liu, and Q. H. Zhou (2021), Correlated observations linking loss of energetic protons to EMIC waves, Sci China Tech Sci, 64, doi:10.1007/s11431-021-1882-x. Zhelavskaya, I., Y. Shprits, and M. Spasojevic (2017), Empirical modeling of the plasmasphere dynamics using neural networks, Journal of Geophysical Research: Space Physics, 122, 11,227–11,244, doi:10.1002/2017JA024406. Zhou, Q., F. Xiao, C. Yang, S. Liu, Y. He, D. N. Baker, H. E. Spence, G. D. Reeves, and H. O. Funsten (2017), Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts, Geophys. Res. Lett., 44, 5251–5258, doi:10.1002/2017GL073051.

[1]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[2]

Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics. doi: 10.26464/epp2022032

[3]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[4]

PengCheng Zhou, William L. Ellsworth, HongFeng Yang, Yen Joe Tan, Gregory C. Beroza, MinHan Sheng, RiSheng Chu, 2021: Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China, Earth and Planetary Physics, 5, 501-519. doi: 10.26464/epp2021053

[5]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055

[6]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[7]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[8]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[9]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[10]

Wei Zhang, Mei Tang, ZhenWei Niu, 2022: The anisotropy of hcp iron under inner core conditions: the effect of light elements, Earth and Planetary Physics. doi: 10.26464/epp2022035

[11]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[12]

YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020

[13]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[14]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[15]

ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008

[16]

Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029

[17]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[18]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[19]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[20]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A machine learning-based electron density (MLED) model in the inner magnetosphere

QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao