Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhou, Q. H., Chen, Y. X., Xiao, F. L., Zhang, S., Liu, S., Yang, C., He, Y. H., and Gao, Z. L. (2022). A machine-learning-based electron density (MLED) model in the inner magnetosphere. Earth Planet. Phys., 6(4), 350–358. http://doi.org/10.26464/epp2022036

2022, 6(4): 350-358. doi: 10.26464/epp2022036

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

A machine-learning-based electron density (MLED) model in the inner magnetosphere

1. 

School of Physics and Electronic Sciences, Changsha University of Science and Technology, Changsha 410114, China

2. 

Hunan Provincial Key Laboratory of Flexible Electronic Materials Genome Engineering, Changsha University of Science and Technology, Changsha 410114, China

Corresponding author: FuLiang Xiao, flxiao@126.com

Received Date: 2022-03-15
Web Publishing Date: 2022-06-20

Plasma density is an important factor in determining wave-particle interactions in the magnetosphere. We develop a machine-learning-based electron density (MLED) model in the inner magnetosphere using electron density data from Van Allen Probes between September 25, 2012 and August 30, 2019. This MLED model is a physics-based nonlinear network that employs fundamental physical principles to describe variations of electron density. It predicts the plasmapause location under different geomagnetic conditions, and models separately the electron densities of the plasmasphere and of the trough. We train the model using gradient descent and backpropagation algorithms, which are widely used to deal effectively with nonlinear relationships among physical quantities in space plasma environments. The model gives explicit expressions with few parameters and describes the associations of electron density with geomagnetic activity, solar cycle, and seasonal effects. Under various geomagnetic conditions, the electron densities calculated by this model agree well with empirical observations and provide a good description of plasmapause movement. This MLED model, which can be easily incorporated into previously developed radiation belt models, promises to be very helpful in modeling and improving forecasting of radiation belt electron dynamics.

Key words: background electron density, inner magnetosphere, machine learning, Van Allen Probes observation

Bortnik, J., Li, W., Thorne, R. M., and Angelopoulos, V. (2016). A unified approach to inner magnetospheric state prediction. J. Geophys. Res.:Space Phys., 121(3), 2423–2430. https://doi.org/10.1002/2015JA021733

Bortnik, J., Chu, X. N., Ma, Q. L., Li, W., Zhang, X. J., Thorne, R. M., Angelopoulos, V., Denton, R. E., Kletzing, C. A., … Baker, D. N. (2018). Artificial neural networks for determining magnetospheric conditions. In E. Camporeale, et al. (Eds.), Machine Learning Techniques for Space Weather (pp. 279-300). Amsterdam, Netherlands: Elsevier.

Carpenter, D. L., and Anderson, R. R. (1992). An ISEE/whistler model of equatorial electron density in the magnetosphere. J. Geophys. Res.:Space Phys., 97(A2), 1097–1108. https://doi.org/10.1029/91JA01548

Chappell, C. R. (1972). Recent satellite measurements of the morphology and dynamics of the plasmasphere. Rev. Geophys., 10(4), 951–979. https://doi.org/10.1029/RG010i004p00951

Chen, L. J., Thorne, R. M., and Horne, R. B. (2009). Simulation of EMIC wave excitation in a model magnetosphere including structured high-density plumes. J. Geophys. Res.:Space Phys., 114(A7), A07221. https://doi.org/10.1029/2009JA014204

Chu, X. N., Bortnik, J., Li, W., Ma, Q., Angelopoulos, V., and Thorne, R. M. (2017a). Erosion and refilling of the plasmasphere during a geomagnetic storm modeled by a neural network. J. Geophys. Res.:Space Phys., 122(7), 7118–7129. https://doi.org/10.1002/2017JA023948

Chu, X. N., Bortnik, J., Li, W., Ma, Q. L., Denton, R., Yue, C., Angelopoulos, V., Thorne, R. M., Darrouzet, F., … Menietti, J. (2017b). A neural network model of three-dimensional dynamic electron density in the inner magnetosphere. J. Geophys. Res.:Space Phys., 122(9), 9183–9197. https://doi.org/10.1002/2017JA024464

Darrouzet, F., De Keyser, J., Décréau, P. M. E., El Lemdani-Mazouz, F., and Vallières, X. (2008). Statistical analysis of plasmaspheric plumes with Cluster/WHISPER observations. Ann. Geophys., 26(8), 2403–2417. https://doi.org/10.5194/angeo-26-2403-2008

Escoubet, C. P., Pedersen, A., Schmidt, R., and Lindqvist, P. A. (1997). Density in the magnetosphere inferred from ISEE 1 spacecraft potential. J. Geophys. Res.:Space Phys., 102(A8), 17595–17609. https://doi.org/10.1029/97JA00290

Fu, H. S., Tu, J., Song, P., Cao, J. B., Reinisch, B. W., and Yang, B. (2010a). The nightside-to-dayside evolution of the inner magnetosphere: Imager for Magnetopause-to-Aurora Global Exploration Radio Plasma Imager observations. J. Geophys. Res.:Space Phys., 115(A4), A04213. https://doi.org/10.1029/2009JA014668

Fu, H. S., Tu, J., Cao, J. B., Song, P., Reinisch, B. W., Gallagher, D. L., and Yang, B. (2010b). IMAGE and DMSP observations of a density trough inside the plasmasphere. J. Geophys. Res.:Space Phys., 115(A7), A07227. https://doi.org/10.1029/2009JA015104

Gallagher, D. L., Craven, P. D., Comfort, R. H., and Moore, T. E. (1995). On the azimuthal variation of core plasma in the equatorial magnetosphere. J. Geophys. Res.:Space Phys., 100(A12), 23597–23605. https://doi.org/10.1029/95JA02100

Gallagher, D. L., Craven, P. D., and Comfort, R. H. (2000). Global core plasma model. J. Geophys. Res.:Space Phys., 105(A8), 18819–18833. https://doi.org/10.1029/1999JA000241

Glauert, S. A., and Horne, R. B. (2005). Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res.:Space Phys., 110(A4), A04206. https://doi.org/10.1029/2004JA010851

Goldstein, J., Sandel, B. R., Thomsen, M. F., Spasojević, M., and Reiff, P. H. (2004). Simultaneous remote sensing and in situ observations of plasmaspheric drainage plumes. J. Geophys. Res.:Space Phys., 109(A3), A03202. https://doi.org/10.1029/2003JA010281

Goldstein, J., Thomsen, M. F., and DeJong, A. (2014). In situ signatures of residual plasmaspheric plumes: Observations and simulation. J. Geophys. Res.:Space Phys., 119(6), 4706–4722. https://doi.org/10.1002/2014JA019953

Guan, C. Y., Shang, X. J., Xie, Y. Q., Yang, C., Zhang, S., Liu, S., and Xiao, F. L. (2020). Generation of simultaneous H+ and He+ band EMIC waves in the nightside radiation belt. Sci. China Technol. Sci., 63(11), 2369–2374. https://doi.org/10.1007/s11431-019-1545-6

Guo, M. Y., Zhou, Q. H., Xiao, F. L., Liu, S., He, Y. H., and Yang, C. (2020). Upward propagation of lightning-generated whistler waves into the radiation belts. Sci. China Technol. Sci., 63(2), 243–248. https://doi.org/10.1007/s11431-018-9486-9

He, J. B., Jin, Y. Y., Xiao, F. L., He, Z. G., Yang, C., Xie, Y. Q., He, Q., Wang, C. Z., Shang, X. J., … Zhang, S. (2021). The influence of various frequency chorus waves on electron dynamics in radiation belts. Sci. China Technol. Sci., 64(4), 890–897. https://doi.org/10.1007/s11431-020-1750-6

Hecht-Nielsen, R. (1989). Theory of the backpropagation neural network. In International 1989 Joint Conference on Neural Networks (pp. 593-605). Washington, DC, USA: IEEE.

Huang, Y., Dai, L., Wang, C., Xu, R. L., and Li, L. (2021). A new inversion method for reconstruction of plasmaspheric He+ density from EUV images. Earth Planet. Phys., 5(2), 218–222. https://doi.org/10.26464/epp2021020

Kurth, W. S., De Pascuale, S., Faden, J. B., Kletzing, C. A., Hospodarsky, G. B., Thaller, S., and Wygant, J. R. (2015). Electron densities inferred from plasma wave spectra obtained by the Waves instrument on Van Allen Probes. J. Geophys. Res.:Space Phys., 120(2), 904–914. https://doi.org/10.1002/2014JA020857

Larsen, B. A., Klumpar, D. M., and Gurgiolo, C. (2007). Correlation between plasmapause position and solar wind parameters. J. Atmos. Sol. -Terr. Phys., 69(3), 334–340. https://doi.org/10.1016/j.jastp.2006.06.017

Meredith, N. P., Horne, R. B., Sicard-Piet, A., Boscher, D., Yearby, K. H., Li, W., and Thorne, R. M. (2012). Global model of lower band and upper band chorus from multiple satellite observations. J. Geophys. Res.:Space Phys., 117(A10), A10225. https://doi.org/10.1029/2012JA017978

O’Brien, T. P., and Moldwin, M. B. (2003). Empirical plasmapause models from magnetic indices. Geophys. Res. Lett., 30(4), 1152. https://doi.org/10.1029/2002GL016007

Ojala, M., and Garriga, G. C. (2009). Permutation tests for studying classifier performance. In 2009 Ninth IEEE International Conference on Data Mining (pp. 908-913). Miami Beach, FL, USA: IEEE.

Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533–536. https://doi.org/10.1038/323533a0

Sauer, K., Baumgärtel, K., and Sydora, R. (2020). Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory. Earth Planet. Phys., 4(2), 138–150. https://doi.org/10.26464/epp2020020

Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., and Anderson, R. R. (2001). An empirical plasmasphere and trough density model: CRRES observations. J. Geophys. Res.:Space Phys., 106(A11), 25631–25641. https://doi.org/10.1029/2000JA000286

Shprits, Y. Y., Kellerman, A. C., Drozdov, A. Y., Spence, H. E., Reeves, G. D., and Baker, D. N. (2015). Combined convective and diffusive simulations: VERB-4D comparison with 17 March 2013 Van Allen Probes observations. Geophys. Res. Lett., 42(22), 9600–9608. https://doi.org/10.1002/2015GL065230

Su, Z. P., Xiao, F. L., Zheng, H. N., and Wang, S. (2010). STEERB: A three-dimensional code for storm-time evolution of electron radiation belt. J. Geophys. Res.:Space Phys., 115(A9), A09208. https://doi.org/10.1029/2009JA015210

Su, Z. P., Liu, N. G., Zheng, H. N., Wang, Y. M., and Wang, S. (2018). Multipoint observations of nightside plasmaspheric hiss generated by substorm-injected electrons. Geophys. Res. Lett., 45(20), 10921–10932. https://doi.org/10.1029/2018GL079927

Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E. (1973). Plasmaspheric hiss. J. Geophys. Res., 78(10), 1581–1596. https://doi.org/10.1029/JA078i010p01581

Wang, J. Z., Zhu, Q., Gu, X. D., Fu, S., Guo, J. G., Zhang, X. X., Yi, J., Guo, Y. J., Ni, B. B., and Xiang, Z. (2020). An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements. Earth Planet. Phys., 4(3), 246–265. https://doi.org/10.26464/epp2020034

Xiao, F. L., Su, Z. P., Zheng, H. N., and Wang, S. (2009). Modeling of outer radiation belt electrons by multidimensional diffusion process. J. Geophys. Res.:Space Phys., 114(A3), A03201. https://doi.org/10.1029/2008JA013580

Xiao, F. L., Su, Z. P., Zheng, H. N., and Wang, S. (2010). Three-dimensional simulations of outer radiation belt electron dynamics including cross-diffusion terms. J. Geophys. Res.:Space Phys., 115(A5), A05216. https://doi.org/10.1029/2009JA014541

Xiao, F. L., Zhou, Q. H., He, Z. G., Yang, C., He, Y. H., and Tang, L. J. (2013). Magnetosonic wave instability by proton ring distributions: Simultaneous data and modeling. J. Geophys. Res.:Space Phys., 118(7), 4053–4058. https://doi.org/10.1002/jgra.50401

Xiao, F. L., Yang, C., Su, Z. P., Zhou, Q. H., He, Z. G., He, Y. H., Baker, D. N., Spence, H. E., Funsten, H. O., and Blake, J. B. (2015). Wave-driven butterfly distribution of Van Allen belt relativistic electrons. Nat. Commun., 6, 8590. https://doi.org/10.1038/ncomms9590

Yang, C., Wang, Z. Q., Xiao, F. L., He, Z. G., Xie, Y. Q., Zhang, S., He, Y. H., Liu, S., and Zhou, Q. H. (2021). Correlated observations linking loss of energetic protons to EMIC waves. Sci. China Technol. Sci., 65(1), 131–138. https://doi.org/10.1007/s11431-021-1882-x

Zhelavskaya, I. S., Shprits, Y. Y., and Spasojević, M. (2017). Empirical modeling of the plasmasphere dynamics using neural networks. J. Geophys. Res.:Space Phys., 122(11), 11227–11244. https://doi.org/10.1002/2017JA024406

Zhou, Q. H., Xiao, F. L., Yang, C., Liu, S., He, Y. H., Baker, D. N., Spence, H. E., Reeves, G. D., and Funsten, H. O. (2017). Generation of lower and upper bands of electrostatic electron cyclotron harmonic waves in the Van Allen radiation belts. Geophys. Res. Lett., 44(11), 5251–5258. https://doi.org/10.1002/2017GL073051

[1]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055

[2]

PengCheng Zhou, William L. Ellsworth, HongFeng Yang, Yen Joe Tan, Gregory C. Beroza, MinHan Sheng, RiSheng Chu, 2021: Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China, Earth and Planetary Physics, 5, 501-519. doi: 10.26464/epp2021053

[3]

Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026

[4]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034

[5]

Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032

[6]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[7]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[8]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[9]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[10]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[11]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[12]

Wei Zhang, Mei Tang, ZhenWei Niu, 2022: The anisotropy of hexagonal close-packed iron under inner core conditions: the effect of light elements, Earth and Planetary Physics, 6, 399-423. doi: 10.26464/epp2022035

[13]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[14]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[15]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[16]

ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008

[17]

YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020

[18]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[19]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013

[20]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A machine-learning-based electron density (MLED) model in the inner magnetosphere

QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao