Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, H. L., Ge, S. C., Meng, L., Wang, M. Y., Rauf, A. and Ullah, S. (2021). Exploring the occurrence rate of PMSE-Es by Digisonde at Tromsø. Earth Planet. Phys., 5(2), 187–195doi: 10.26464/epp2021017

2021, 5(2): 187-195. doi: 10.26464/epp2021017

SPACE PHYSICS

Exploring the occurrence rate of PMSE-Es by Digisonde at Tromsø

1. 

School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu 610054, China

2. 

National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China

3. 

School of Physics, University of Electronic Science and Technology of China, Chengdu 610054, China

Corresponding author: HaiLong Li, hailong703@163.com

Received Date: 2020-10-25
Web Publishing Date: 2021-03-01

Polar mesosphere summer echoes (PMSE) are observed simultaneously with Digisonde and EISCAT VHF radar. The phenomenon of irregular Es layers is called PMSE-like or PMSE-Es (Polar Mesosphere Summer Echoes-Es) and has some relationship with real PMSE. In this paper, the characteristics of irregular Es layers at 80–100 km were observed by Digisonde at Tromsø during 2003–2014 are statistically analyzed with ionograms. The diurnal, day-to-day and year-to-year variations and discrepancies of occurrence rate between PMSE and PMSE-Es are compared with the statistical results observed by Esrange MST radar (ESRAD), and the reasons are discussed. The results show that the trends in the occurrence rate of PMSE-Es are similar to the trends in the occurrence rate of PMSE, but there are some notable differences. The occurrence rate of PMSE-Es is much lower than the occurrence rate of PMSE. The minimum value of PMSE-Es appears 1–2 hours earlier than the minimum value of the PMSE occurrence rate, while PMSE-Es appear earlier than PMSE in the year. In addition, there is a significant positive correlation between the annual average occurrence rates of PMSE and PMSE-Es. PMSE-Es is a relatively important occurrence in the polar mesopause. Analysis of its characteristics can provide new ideas and methods for studying the formation mechanism of PMSE.

Key words: Polar mesosphere summer echoes; Digisonde; EISCAT VHF radar; PMSE-Es; Esrange MST radar

Balsley, B. B., and Huaman, M. (1997). On the relationship between seasonal occurrence of northern hemispheric polar mesosphere summer echoes and mean mesopause temperatures. J. Geophys. Res., 102(D2), 2021–2024. https://doi.org/10.1029/96JD01243

Barabash, V., Kirkwood, S., and Chilson, P. B. (2002). Are variations in PMSE intensity affected by energetic particle precipitation? . Ann. Geophys., 20(4), 539–545. https://doi.org/10.5194/angeo-20-539-2002

Bremer, J., Hoffmann, P., Manson, A., Meek, C. E., Rüster, R., and Singer, W. (1996). PMSE observations at three different frequencies in northern Europe during summer 1994. Ann. Geophys., 14(12), 1317–1327. https://doi.org/10.1007/s00585-996-1317-7

Bremer, J., Hoffmann, P., Latteck, R., Singer, W., and Zecha, M. (2009). Long-term changes of (polar) mesosphere summer echoes. J. Atmos. Solar-Terr. Phys., 71(14-15), 1571–1576. https://doi.org/10.1016/j.jastp.2009.03.010

Cho, J. Y. N., Kelley, M. C., and Heinselman, C. J. (1992). Enhancement of Thomson scatter by charged aerosols in the polar mesosphere: Measurements with a 1.29-GHz radar. Geophys. Res. Lett., 19(11), 1097–1100. https://doi.org/10.1029/92GL01155

Ecklund, W. L., and Balsley, B. B. (1981). Long-term observations of the Arctic mesosphere with the MST radar at Poker Flat, Alaska. J. Geophys. Res., 86(A9), 7775–7780. https://doi.org/10.1029/JA086iA09p07775

Ge, S. C., Li, H. L., Meng, L., Wang, M. Y., Xu, T., Ullah, S., Rauf, A., and Abdel, H. (2020). On the radar frequency dependence of polar mesosphere summer echoes. Earth Planet. Phys., 4(6), 571–578. https://doi.org/10.26464/epp2020061

Ge, S. C., Li, H. L., Xu, B., Xu, T., Meng, L., Wang, M. Y., Hannachi, A., Zhu, M. Y., Broman, L., Ullah, S., and Rauf, A. (2021). Characteristic analysis of layered PMSEs measured with different elevation angles at VHF based on an experimental case. Earth Planet. Phys., 5(1), 42–51. https://doi.org/10.26464/epp2021001

Hall, C., Adami, C., and Tsutsumi, M. (2020). First observations of Polar Mesospheric Echoes at both 31 MHz and 53.5 MHz over Svalbard (78.2°N 15.1°E). Exp. Results, 1, e44. https://doi.org/10.1017/exp.2020.51

Hall, C. M., Aso, T., Tsutsumi, M., Höffner, J., Sigernes, F., and Holdsworth, D. A. (2006). Neutral air temperatures at 90 km and 70°N and 78°N. J. Geophys. Res., 111(D14), D14105. https://doi.org/10.1029/2005JD006794

Hoffmann, P., Singer, W., and Bremer, J. (1999). Mean seasonal and diurnal variations of PMSE and winds from 4 years of radar observations at ALOMAR. Geophys. Res. Lett., 26(11), 1525–1528. https://doi.org/10.1029/1999GL900279

Hosokawa, K., Ogawa, T., Yukimatu, A. S., Sato, N., and Iyemori, T. (2004). Statistics of antarctic mesospheric echoes observed with the SuperDARN Syowa radar. Geophys. Res. Lett., 31(2), L02106. https://doi.org/10.1029/2003GL018776

Hosokawa, K., Ogawa, T., Arnold, N. F., Lester, M., Sato, N., and Yukimatu, A. S. (2005). Extraction of polar mesosphere summer echoes from SuperDARN data. Geophys. Res. Lett., 32(12), L12801. https://doi.org/10.1029/2005GL022788

Karashtin, A. N., Shlyugaev, Y. V., Abramov, V. I., Belov, I. F., Berezin, I. V., Bychkov, V. V., Eryshev, E. B., and Komrakov, G. P. (1997). First HF radar measurements of summer mesopause echoes at SURA. Ann. Geophys., 15(7), 935–941. https://doi.org/10.1007/s00585-997-0935-z

Kirkwood, S., Barabash, V., Chilson, P., Réchou, A., Stebel, K., Espy, P., Witt, G., and Stegman, J. (1998). The 1997 pmse season-its relation to wind, temperature and water vapour. Geophys. Res. Lett., 25(11), 1867–1870. https://doi.org/10.1029/98GL01243

Latteck, R., Singer, W., Morris, R. J., Holdsworth, D. A., and Murphy, D. J. (2007). Observation of polar mesosphere summer echoes with calibrated VHF radars at 69° in the northern and southern hemispheres. Geophys. Res. Lett., 34(14), L14805. https://doi.org/10.1029/2007GL030032

Latteck, R., and Bremer, J. (2013). Long-term changes of polar mesosphere summer echoes at 69°N. J. Geophys. Res., 118(18), 10441–10448. https://doi.org/10.1002/jgrd.50787

Li, H. L., Wu, J., Liu, R. Y., and Huang, J. Y. (2007a). Study on mesosphere summer echoes observed by digital ionosonde at Zhongshan Station, Antarctica. Earth Planets Space, 59(10), 1135–1139. https://doi.org/10.1186/BF03352056

Li, H. L., Wu, J., Liu, R. Y., and Huang, J. Y. (2007b). The statistics analysis of mesosphere summer echoes observed by DPS-4 at Zhongshan station, Antarctica. Chin. J. Polar Res. (in Chinese) , 19(1), 1–9.

Li, H. L., Wang, M. Y., Wu, J., Wu, J., Xu, B., and Huang, J. Y. (2010). Preliminary experiment analysis about PMSE artificial electron heating and overshoot. Chin J. Geophys. (in Chinese) , 53(12), 2836–2842. https://doi.org/10.3969/j.issn.0001-5733.2010.12.006

Li, Q., and Rapp, M. (2013). PMSE observations with the EISCAT VHF- and UHF-radars: ice particles and their effect on ambient electron densities. J. Atmos. Solar-Terr. Phys., 104, 270–276. https://doi.org/10.1016/j.jastp.2012.10.015

Liou, K., Newell, P. T., Meng, C. I., Brittnacher, M., and Parks, G. (1997). Synoptic auroral distribution: a survey using polar ultraviolet imagery. J. Geophys. Res., 102(A12), 27197–27205. https://doi.org/10.1029/97JA02638

Liu, E. X., Hu, H. Q., Liu, R. Y., Wu, Z. S., Wu, M. J., Yang, H. G., and Zhang, B. C. (2012). Diurnal variation of the HF radar echoes at Zhongshan Station and the influence of geomagnetic activity. Chin. J. Geophys. (in Chinese) , 55(9), 3066–3076. https://doi.org/10.6038/j.issn.0001-5733.2012.09.024

Liu, J. Y., Pan, C. J., and Lee, C. C. (2002). VHF radar and MF/HF dynasonde observations during polar mesosphere summer echoes conditions at EISCAT. Earth Planets Space, 54(6), 691–698. https://doi.org/10.1186/BF03351720

Mahmoudian, A., Senior, A., Scales, W. A., Kosch, M. J., and Rietveld, M. T. (2018). Dusty space plasma diagnosis using the behavior of polar mesospheric summer echoes during electron precipitation events. J. Geophys. Res., 123(9), 7697–7709. https://doi.org/10.1029/2018JA025395

Mann, I., Häggström, I., Tjulin, A., Rostami, S., Anyairo, C. C., and Dalin, P. (2016). First wind shear observation in PMSE with the tristatic EISCAT VHF radar. J. Geophys. Res., 121(11), 11271–11281. https://doi.org/10.1002/2016JA023080

Morris, R. J., Murphy, D. J., Klekociuk, A. R., and Holdsworth, D. A. (2007). First complete season of PMSE observations above Davis, Antarctica, and their relation to winds and temperatures. Geophys. Res. Lett., 34(5), L05805. https://doi.org/10.1029/2006GL028641

Ogawa, T., Nishitani, N., Sato, N., Yamagishi, H., and Yukimatu, A. S. (2002). Upper mesosphere summer echoes detected with the Antarctic Syowa HF radar. Geophys. Res. Lett., 29(7), 1157. https://doi.org/10.1029/2001GL014094

Ogawa, T., Arnold, N. F., Kirkwood, S., Nishitani, N., and Lester, M. (2003). Finland HF and Esrange MST radar observations of polar mesosphere summer echoes. Ann. Geophys, 21(4), 1047–1055. https://doi.org/10.5194/angeo-21-1047-2003

Ogawa, T., Kawamura, S., and Murayama, Y. (2011). Mesosphere summer echoes observed with VHF and MF radars at Wakkanai, Japan (45.4°N). Atmos. Solar-Terr. Phys., 73(14-15), 2132–2141. https://doi.org/10.1016/j.jastp.2010.12.016

Ogawa, T., Nishitani, N., Kawamura, S., and Murayama, Y. (2013). Mesosphere summer echoes observed with the SuperDARN Hokkaido HF radar at Rikubetsu, Japan (43.5°N). Earth Planets Space, 65(12), 1593–1597. https://doi.org/10.5047/eps.2013.07.009

Rauf, A., Li, H. L., Ullah, S., Meng, L., Wang, B., and Wang, M. Y. (2018). Statistical study about the influence of particle precipitation on mesosphere summer echoes in polar latitudes during July 2013. Earth Planets Space, 70(1), 108. https://doi.org/10.1186/s40623-018-0885-6

Rauf, A., Li, H. L., Ullah, S, Wang, M. Y., and Meng, L. (2019). Investigation of PMSE echoes characteristics using the discontinuous EISCAT UHF observation and its relation with space environment. Adv. Polar Sci., 30(2), 132–138. https://doi.org/10.13679/j.advps.2018.0041

Rietveld, M. T., Wright, J. W., Zabotin, N., and Pitteway, M. L. V. (2008). The Tromsø dynasonde. Polar sci., 2(1), 55–71. https://doi.org/10.1016/j.polar.2008.02.001

Smirnova, M., Belova, E., Kirkwood, S., and Mitchell, N. (2010). Polar mesosphere summer echoes with ESRAD, Kiruna, Sweden: variations and trends over 1997-2008. Atmos. Solar-Terr. Phys., 72(5-6), 435–447. https://doi.org/10.1016/j.jastp.2009.12.014

Yi, W., Xue, X. H., Reid, I. M., Murphy, D. J., Hall, C. M., Tsutsumi, M., Ning, B. Q., Li, G. Z., Vincent, R. A., … Dou, X. K. (2019). Climatology of the mesopause relative density using a global distribution of meteor radars. Atmos. Chem. Phys., 19(11), 7567–7581. https://doi.org/10.5194/acp-19-7567-2019

[1]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061

[2]

ShuCan Ge, HaiLong Li, Bin Xu, Tong Xu, Lin Meng, MaoYan Wang, Abdel Hannachi, MengYan Zhu, Lina Broman, Safi Ullah, Abdur Rauf, 2021: Characteristic analysis of layered PMSEs measured with different elevation angles at VHF based on an experimental case, Earth and Planetary Physics, 5, 42-51. doi: 10.26464/epp2021001

[3]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[4]

Safi Ullah, HaiLong Li, Abdur Rauf, Lin Meng, Bin Wang, ShuCan Ge, MaoYan Wang, 2021: Effect of ions on conductivity and permittivity in the Polar Mesosphere Summer Echoes region, Earth and Planetary Physics, 5, 196-204. doi: 10.26464/epp2021016

[5]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

[6]

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063

[7]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[8]

Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004

[9]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[10]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[11]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[12]

Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system, Earth and Planetary Physics, 3, 147-156. doi: 10.26464/epp2019018

[13]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Exploring the occurrence rate of PMSE-Es by Digisonde at Tromsø

HaiLong Li, ShuCan Ge, Lin Meng, MaoYan Wang, Abdur Rauf, Safi Ullah