Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Yu, G. B., Liu, E. H., Liu, G. L., Zhou, L., Zeng, J. Z., Chen, Y. P., Zhou, X. D., Zhao, R. J., and Zhu, S. Y. (2020). Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1. Earth Planet. Phys., 4(4), 364–370doi: 10.26464/epp2020056

2020, 4(4): 364-370. doi: 10.26464/epp2020056

PLANETARY SCIENCES

Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1

1. 

Key Laboratory of Science and Technology on Space Optoelectronic Precision Measurement, Chinese Academy of Sciences, Chengdu 610209, China

2. 

The Institute of Optics and Electronics, the Chinese Academy of Sciences, Chengdu 610209, China

Corresponding author: GuoBin Yu, ygb@ioe.ac.cn

Received Date: 2020-05-26
Web Publishing Date: 2020-07-31

China's first Mars exploration mission will carry out comprehensive global surveys of the planet from data collected by instruments carried in orbit and roving on the planet itself. Goals of the mission include detailed inspections and surveys of key areas on the surface of Mars. One of the main scientific payloads installed on the orbiter is the moderate resolution camera. Its mission is to image the surface of Mars sufficiently to produce a global remote sensing image map of the planet, and to explore and record changes to the topography of Mars, including major geological structures, and to advance research on topography and geomorphology in general. The moderate resolution camera uses a lightweight and compact integrated design; its primary components are an optical module, a focal plane module, a camera control module, a power and interface module, a camera support module, a thermal control module, and a reference module. Radiometric calibration, color calibration, and geometric calibration have been carried out to ensure that the camera can acquire sufficient accurate data to complete mission goals. This paper introduces the camera's detection mission, its system composition, and its working principle; it also describes the camera's ground calibration tests and their results, and provides a reference for processing the camera's scientific data and for future applications.

Key words: Mars exploration; moderate resolution camera; system composition; working principle; calibration test

Geng, Y., Zhou, J. S., Li, S., Fu, Z. L., Meng, L. Z., Liu, J. J., and Wang, H. P. (2018). A brief introduction of the first mars exploration mission in China. J. Deep Space Explor. (in Chinese) , 5(5), 399–405. https://doi.org/10.15982/j.issn.2095-7777.2018.05.001

Li, C. L., Liu, J. J., Geng, Y., Cao, J. B., Zhang, T. L., Fang, G. Y., Yang, J. F., Shu, R., Zou, Y. L., … Ouyang, Z. Y. (2018). Scientific objectives and payload configuration of China’s first Mars exploration mission. J. Deep Space Explor. (in Chinese) , 5(5), 406–413. https://doi.org/10.15982/j.issn.2095-7777.2018.05.002

Ouyang, Z. Y., and Xiao, F. G. (2012). The Mars and its environment . Spacecraft Environment Engineering (in Chinese) , 29(6), 591–601.

Ren, X., Li, C. L., Liu, J. J., Wang, F. F., Yang, J. F., Liu, E. H., Xue, B., and Zhao, R. J. (2014). A method and results of color calibration for the Chang’e-3 terrain camera and panoramic camera. Res. Astron. Astrophys. (in Chinese) , 14(12), 1557–1566. https://doi.org/10.1088/1674-4527/14/12/005

Wu, J., Zhu, G. W., Zhao, H., Wang, C., Li, L., Sun, Y. Q., Guo, W., and Huang, C. L. (2009). Overview of scientific objectives of China-Russia Jiont Mars Exploration Program YH-1. Chin. J. Space Sci. (in Chinese) , 29(5), 449–455.

Yu, G. B., Liu, E. H., Zhao, R. J., Zhong, J., Zhou, X. D., Zhou, W. L., Wang, J., Chen, Y. P., and Hao, Y. J. (2015). Payload topography camera of Chang’e-3. Res. Astron. Astrophys. (in Chinese) , 15(11), 1881–1892. https://doi.org/10.1088/1674-4527/15/11/010

Zhao, R. J., Liu, E. H., Wang, J., and Yu, G. B. (2016). A method of color correction for CE-3 satellite camera topography image. Journal of Astronautics (in Chinese) , 37(2), 32–38.

[1]

YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057

[2]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[3]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[4]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[5]

JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042

[6]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[7]

YongPing Wang, GaoPeng Lu, Ming Ma, HongBo Zhang, YanFeng Fan, GuoJin Liu, ZheRun Wan, Yu Wang, Kang-Ming Peng, ChangZhi Peng, FeiFan Liu, BaoYou Zhu, BinBin Ni, XuDong Gu, Long Chen, Juan Yi, RuoXian Zhou, 2019: Triangulation of red sprites observed above a mesoscale convective system in North China, Earth and Planetary Physics, 3, 111-125. doi: 10.26464/epp2019015

[8]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[9]

Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049

[10]

Xian Chen, Zhong Zhong, YiJia Hu, Shi Zhong, Wei Lu, Jing Jiang, 2019: Role of tropical cyclones over the western North Pacific in the East Asian summer monsoon system, Earth and Planetary Physics, 3, 147-156. doi: 10.26464/epp2019018

[11]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics. doi: 10.26464/epp2020043

[12]

XiaoXin Zhang, Fei He, Bo Chen, Chao Shen, HuaNing Wang, 2017: Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera, Earth and Planetary Physics, 1, 35-43. doi: 10.26464/epp2017005

[13]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[14]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[15]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[16]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062

[17]

Bin Zhou, ShaoXiang Shen, Wei Lu, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[18]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[19]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

[20]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1

GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu