Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, and HeTing Jian, 2022: Vertical Crustal Deformation Velocity and its Influencing Factors over the Qinghai-Tibet Plateau based on the Satellite Gravity Data, Earth and Planetary Physics.

doi: 10.26464/epp2022034

Vertical Crustal Deformation Velocity and its Influencing Factors over the Qinghai-Tibet Plateau based on the Satellite Gravity Data

1 College of Geomatics, Xi’an University of Science and Technology, Xi’an 710054, China;

2 College of Sciences, Guangdong University of Petrochemical Technology, Maoming 525000, China;

3 School of Geodesy and Geomatics, Wuhan University, Wuhan 430072, China;

4 State Key Laboratory of Geodesy and Earth’s Dynamics, Innovation Academy for Precision Measurement Science and Technology, CAS,Wuhan 430077, China

Corresponding author: HuRong Duan,

Fund Project: The authors would like to thank the agencies for providing free GRACE (, GLDAS ( a/GLDAS), and CPC ( The figures are plotted using Generic Mapping Tool (GMT) software(Wessel et al. 2013) . This research was financially supported by State Key Laboratory of Geodesy and Earth’s Dynamics (No. SKLGED2022-5-2), Innovation Academy for Precision Measurement Science and Technology, the National Natural Sicence Foundation of China (grant numbers No.41304013, 41967038), the Natural Science Foundation of Guangdong Province (Grant no. 2021A1515011487), and the Projects of Talents Recruitment of GDUPT (520130). Acknowledgement for the data support from “China Earthquake Networks Center, National Earthquake Data Center (http://data/ ”. Thanks to the two reviewers for their comments.

The uplift of the Qinghai-Tibet Plateau (TP) strongly influences climate change, both regionally and globally. Surface observation data from this region have limited coverage and are difficult to obtain. Consequently, the vertical crustal deformation velocity (VCDV) distribution of the TP is poorly constrained. In this study, VCDV from the TP was inverted using data from the gravity recovery and climate experiment (GRACE). Based on the assumption that the gravity signal detected by GRACE is mainly composed of hydrological factors and vertical crustal movement, by deducting hydrological factors, the vertical crustal movement could be obtained. From this, the distribution of the vertical crustal deformation velocity across the TP was inverted. The results show that the VCDV of the southern, eastern, and northern TP is ~1.1 mm/a, ~0.5 mm/a, and −0.1 mm/a, respectively, while that of the region between the Qilian Haiyuan Fault and Kunlun Fault is ~0.0 mm/a. These results are consistent with the distributions of crustal deformation, thrust earthquakes/faults, and regional lithospheric activity. Hydrology, crustal thickness, and topographic factors do not change the overall distribution of the VCDV across the TP. The influence of hydrological factors is marked, with the maximum differences being approximately −0.4 mm/a in the northwest and 1.0 mm/a in the central area. The results of this study are significant for understanding the kinematics of the TP.

Key words: GRACE, Qinghai-Tibet Plateau, Crustal vertical deformation, Hydrological factors, Crustal thickness.

Aa, G., J. Wahr & S. J. Zhong (2013) Computations of the viscoelastic response of a 3-D compressible Earth to surface loading: An application to Glacial Isostatic Adjustment in Antarctica and Canada. Geophysical Journal International, 192, 557-572. Alex S, G., G. Moholdt, J. G. Cogley, B. Wouters, A. A.Arendt, J. Wahr, E. Berthier, R. Hock, W. T. Pfeffer, G. Kaser, S. R. M. Liqtenberg, T. Bolch, M. J.Sharp, J. O. Hagen, M. R. V. D. Broeke & F. Paul (2013) A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009. Science 340, 852-857. An, Z. S., K. John E, W. L. Prell & S. C. Porter (2001) Evolution of Asian monsoons an phased uplift of the Himalaya-Tibetan Plateau since Late Miocene times. Nature, 411, 62-66. Baranov, A., M. Bagherbandi & R. Tenzer (2018) Combined Gravimetric-Seismic Moho Model of Tibet. Geosciences, 8, 461. Braitenberg, C., M. Zadro, J. Fang, Y. Wang & H. T. Hsu (2000) The gravity and isostatic Moho undulations in Qinghai-Tibet plateau. Journal of Geodynamics, 30, 489-505. Chen, J. L., C. Wilson, B. Tapley, L. Longuevergne, Z. L. Yang & B. Scanlon (2010) Recent La Plata basin drought conditions observed by satellite gravimetry. Journal of Geophysical Research, 115. Chen, J. L., C. R. Wilson, J. Li & Z. Zhang (2015) Reducing leakage error in GRACE-observed long-term ice mass change: a case study in West Antarctica. Journal of Geodesy, 89, 925-940. Chen, M., F. L. Niu, J. Tromp, A. Lenardic, C. T. Lee, W. R. Cao & J. L. Ribeiro (2017) Lithospheric foundering and underthrusting imaged beneath Tibet. Nature Communications, 8, 15659. Chen, W. J. & R. Tenzer (2017) Moho modeling in spatial domain: A case study under Tibet. Advances in Space Research, 59, 2855-2869. Dai, F. C., C. Xu, X. Yao, L. Xu, X. B. Tu & Q. M. Gong (2011) Spatial distribution of landslides triggered by the 2008 Ms 8.0 Wenchuan earthquake, China. Journal of Asian Earth Sciences, 40, 883-895. Deng, Y., H. Cheng, B. Zhang, H. Zhang & Y. Shi (2018) Establishment of the fault slip model for large historical earthquakes and its influence on co-seismic calculations: an example of the MS8.5 Haiyuan earthquake in 1920. Acta Geophysica Sinica, 61, 975-987. Dewey, J. F. & K. C. A. Burke (1973) Tibetan, Variscan, and Precambrian Basement Reactivation: Products of Continental Collision. Journal of Geology, 81, 683-692. Duan, H. R., M. Z. Kang, S. Y. Wu, L. K. Chen & J. S. Jiao (2020) Uplift rate of the Tibetan Plateau constrained by GRACE time-variable grivity field. Chinese J.Geophys.(in Chinese), 63, 4345-4360. Duan, H. R., Y. Z. Zhang, H. J. Xu & W. Q. Yao (2011) Velocity of crustal vertical movement computed by using GRACE data in China's western region. Progress in Geophysics, 26, 1201-1205. England, P. & G. Houseman (1989) Extension during continental convergence, with application to the Tibetan Plateau. Journal of Geophysical Research Atmospheres, 94. England, P. & P. Molnar (1990) Right-lateral shear and rotation as explained for strike-slip faulting in the eastern Tibet. Nature, 344, 140-142. Erkan, K., C. Shum, L. Wang, J. Guo, C. Jekeli, H. Lee, W. R. Panero, J. Duan, Z. Huang & H. Wang (2011) Geodetic constraints on the Qinghai-Tibetan Plateau present-day geophysical processes. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 22, 2 Feng, Z. M., W. J. Li, P. Li & C. W. Xiao (2020) Relief degree of land surface and its geographical meanings in the Qinghai-Tibet Plateau, China. Acta Geographica Sinica, 75, 1359-1372. Fu, J. G., G. M. Li, G. H. Wang, Y. Huang, L. K. Zhang, S. L. Dong & W. Liang (2017) First field identification of the Cuonadong dome in southern Tibet: implications for EW extension of the North Himalayan gneiss dome. International Journal of Earth Sciences, 1, 1581-1596. Han, S. C., C. K. Shum, M. Bevis, C. Ji & C. Y. Kuo (2006) Crustal Dilatation Observed by GRACE After the 2004 Sumatra-Andaman Earthquake. Science, 313, 658-662. Hao, M., Q. L. Wang, Z. K. Shen, D. X. Cui, L. Y. Ji, Y. H. Li & S. L. Qin (2014) Present day crustal vertical movement inferred from precise leveling data in eastern margin of Tibetan Plateau. Tectonophysics, 632, 281-292. He, C. S. (2019) Uplift mechanism of the world's largest continental plateau in Tibet. Acta Geologica Sinica - English Edition, 93, 110-110. Huang, F., R. X. Bai, G. X. Deng, X. C. Liu & X. H. Li (2021) Barium isotope evidence for the role of magmatic fluids in the origin of Himalayan leucogranites. Science Bulletin, 66. Jiao, J. S., Y. Z. Zhang, P. Yin, Z. Kainan, Y. P. Wang & M. Bilker-Koivula (2019) Changing Moho Beneath the Tibetan Plateau Revealed by GRACE Observations. Journal of Geophysical Research: Solid Earth, 124, 5907-5923. Li, H. O., X. W. Xu & M. Jiang (2008) Deep dynamical processes in the central-southern Qinghai-Tibet Plateau—Receiver functions and travel-time residuals analysis of north Hi-Climb. Science in China Series D: Earth Sciences, 51, 1297-1305. Li, P., A. Zhu, W. Han & M. Li (2012) Numerical simulation of geodynamic problems-Take present uplift of Qinghai-Tibet plateau as example. Seismological and Geomagnetic Observation and Research(in Chinese), 33, 1-6 Liang, S. M., W. J. Gan, C. Z. Shen, X. Genru, J. Liu-Zeng, W. T. Chen, X. G. Ding & D. M. Zhou (2013) Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res., 118, 5722-5732. Liu, J., J. Fang, H. L. Li, R. H. Cui & M. Chen (2015) Secular variation of gravity anomalies within the Tibetan Plateau derived from GRACE data. Chinese J.Geophys.(in Chinese), 58, 3496-3506. Loomis, B., K. Rachlin, D. Wiese, F. Landerer & S. Luthcke (2020) Replacing GRACE/GRACE‐FO C30 with satellite laser ranging: Impacts on Antarctic Ice Sheet mass change. Geophysical Research Letters, 47. Mohamed, A., M. Sultan, M. Ahmed, E. Yan & E. Ahmed (2017) Aquifer recharge, depletion, and connectivity: Inferences from GRACE, land surface models, and geochemical and geophysical data. Geological Society of America Bulletin, 129, 534–546. Molnar, P. & P. Tapponnier (1975) Cenozoic Tectonics of Asia: Effects of a Continental Collision: Features of recent continental tectonics in Asia can be interpreted as results of the India-Eurasia collision. Science, 189, 419-426. Moritz, H. (1990) The inverse Vening Meinesz problem in isostasy. Geophysical Journal International, 102, 733-738. Oelke, C. & T. Zhang (2007) Modeling the active-layer depth over the Tibetan Plateau. Arctic, Antarctic, and Alpine Research, 39, 714-722 Pan, Y. J., W. B. Shen, C. K. Shum & R. Z. Chen (2018) Spatially varying surface seasonal oscillations and 3-D crustal deformation of the Tibetan Plateau derived from GPS and GRACE data. Earth and Planetary Science Letters, 502, 12-22. Qian, Z. J. (2020) Regional groundwater environmental monitoring and future development. Resources Economization & Environment Protection 44. Qiao, B. J., L. P. Zhu & R. M. Yang (2019) Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sensing of Environment, 222, 232-243. Qiu, J. (2010) Measuring the meltdown. Nature, 468, 141-142. --- (2012) Tibetan glaciers shrinking rapidly. Nature. Rao, W. L. & W. K. Sun (2021) Moho Interface Changes Beneath the Tibetan Plateau Based on GRACE Data. Journal of Geophysical Research: Solid Earth, 126, e2020JB020605. Rodell, M., P. Houser, U. E. A. Jambor, J. Gottschalck, K. Mitchell, J. Meng, K. Arsenault, C. Brian, J. Radakovich, B. Mg, J. Entin, J. Walker, D. Lohmann & T. Dl (2004) The Global Land Data Assimilation System. bams, 85, 381-394. Rodell, M., I. Velicogna & J. S. Famiglietti (2009) Satellite Based Estimates of Groundwater Depletion in India. Nature, 460, 999-1002. Shin, Y., C. K. Shum, C. Braitenberg, S. M. Lee, S. H. Na, K. Choi, H. T. Hsu, Y. S. Park & M. Lim (2014) Moho topography, ranges and folds of Tibet by analysis of global gravity models and GOCE data. Scientific Reports, 5, 11681. Sjöberg, L. & M. Abrehdary (2021) The uncertainty of CRUST1.0 Moho depth and density contrast models. Journal of Applied Geodesy. Steffen, H., S. Petrovic, J. Müller, R. Schmidt, J. Wünsch, F. Barthelmes & J. Kusche (2009) Significance of secular trends of mass variations determined from GRACE solutions. Journal of Geodynamics, 48, 157-165. Stolk, W., M. Kaban, F. Beekman, M. Tesauro, W. Mooney & S. Cloetingh (2013) High resolution regional crustal models from irregularly distributed data: Application to Asia and adjacent areas. Tectonophysics, 602, 55-68. Sun, W. K., Q. Wang, H. Li, Y. Wang, S. Okubo, D. S. Shao, D. Z. Liu & G. Y. Fu (2009) Gravity and GPS measurements reveal mass loss beneath the Tibetan Plateau: Geodetic evidence of increasing crustal thickness. Geophysical Research Letters, 36. Sun, Y., R. Riva & P. Ditmar (2016) Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. Journal of Geophysical Research Solid Earth, 121, 8352-8370. Velicogna, I. (2009) Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE. Geophysical Research Letters, 36, 158-168. Wang, H. S., P. Wu & Z. Y. Wang (2006) An approach for spherical harmonic analysis of non-smooth data. Computers & Geosciences, 32, 1654-1668. Wang, M. & Z. K. Shen (2020) Present‐Day Crustal Deformation of Continental China Derived From GPS and Its Tectonic Implications. Journal of Geophysical Research: Solid Earth, 125. Wang, Q., P. Z. Zhang, J. T. Freymueller, R. Bilham, K. M. Larson, X. A. Lai, X. Z. You, Z. J. Niu, J. C. Wu, Y. X. Li, J. N. Liu, Z. Q. Yang & Q. Z. Chen (2001) Present Day Crustal Deformation in China Constrained by Global Positioning System Measurements. Science, 294, 574. Wessel, P., W. Smith, R. Scharroo, J. Luis & F. Wobbe (2013) Generic Mapping Tools: Improved Version Released. Eos Transactions American Geophysical Union, 94, 409-410. Westaway, R. (1995) Crustal volume balance during the India-Eurasia collision and altitude of the Tibetan Plateau: A working hypothesis. Journal of Geophysical Research Atmospheres, 100, 15173-15192. Wu, F. Y., X. C. Liu, Z. C. Liu, R. C. Wang, L. Xie, J. M. Wang, W. Q. Ji, L. Yang, C. Liu, G. Khanal & S. X. He (2020) Highly fractionated Himalayan leucogranites and associated rare-metal mineralization. Lithos, 352-353, 105319. Xiang, L. W., H. S. Wang, H. Steffen, P. Wu, L. L. Jia, L. M. Jiang & Q. Shen (2016) Groundwater storage changes in the Tibetan Plateau and adjacent areas revealed from GRACE satellite gravity data. Earth and Planetary Science Letters, 449, 228-239. Xing, L. L., W. K. Sun, H. Li & G. Yang (2011) Present-day crust thickness increasing beneath the qinghai-Tibetan Plateau by using geodetic data at lhasa station. Acta Geodaetica et Cartographica Sinica, 40, 41-44 Xu, C., Z. W. Liu, Z. C. Luo, Y. H. Wu & H. H. Wang (2017) Moho Topography of the Tibetan Plateau Using Multi-Scale Gravity Analysis and Its Tectonic Implications. Journal of Asian Earth Sciences, 138, 378-386. Xu, W. C., H. F. Zhang, B. J. Luo, L. Guo & H. Yang (2015) Adakite-like geochemical signature produced by amphibole-dominated fractionation of arc magmas: An example from the Late Cretaceous magmatism in Gangdese belt, south Tibet. Lithos, 232, 197-210. Yao, T. D., L. Thompson, W. Yang, W. S. Yu, Y. Gao, X. J. Guo, X. X. Yang, K. Q. Duan, H. B. Zhao, B. Q. Xu, J. C. Pu, A. X. Lu, Y. Xiang, D. Kattel & D. Joswiak (2012) Different Glacier Status with Atmospheric Circulations in Tibetan Plateau and Surroundings. Nature Climate Change, 2, 663-667. Ye, H., Y. G.H., T. B. Zhang, X. B. Zhou, J. J. Li, X. J. Bie, Y. L. Shen & Z. L. Yang (2020) Spatiotemporal variations of snow cover in the Qinghai-Tibetan Plateau from 2000 to 2019. Resources Science, 42, 2434-2450. Yi, S. & W. K. Sun (2014) Evaluation of Glacier Changes in High Mountain Asia Based on 10-year GRACE-RL05 Models. Journal of Geophysical Research: Solid Earth, 119, 2504-2517. Yi, S., J. T.Freymueller & W. K. Sun (2016) How fast is the middle-lower crust flowing in eastern Tibet? A constraint from geodetic observations: flow in eastern Tibet. Journal of Geophysical Research: Solid Earth, 121, 6903-6915. Zhang, G. Q., H. J. Xie, S. C. Kang, D. H. Yi & S. Ackley (2011a) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment 115, 1733-1742. Zhang, G. Q., H. J. Xie, S. C. Kang, D. H. Yi & S. F. Ackley (2011b) Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sensing of Environment, 115, 1733-1742. Zhang, P. Z., Q. D. Deng, Z. Q. Zhang & H. B. Li (2013) Active faults, earthquake hazards and associated geodynamic processes in continental China. Scientia Sinica Terrae (in Chinese), 43, 1607-1620 Zhao, G. D., J. X. Liu, B. Chen & M. K. Kaban (2020) Moho Beneath Tibet Based on a Joint Analysis of Gravity and Seismic Data. Geochemistry Geophysics Geosystems, 21.


WeiLong Rao, WenKe Sun, 2022: Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data, Earth and Planetary Physics, 6, 228-240. doi: 10.26464/epp2022021


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010


Yue Shen, QiuYu Wang, WeiLong Rao, WenKe Sun, 2022: Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China contient, Earth and Planetary Physics, 6, 96-107. doi: 10.26464/epp2022009


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045


Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030


DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038


Ragini Balachandran, Li-Jen Chen, Shan Wang, Mei-Ching Fok, 2021: Correlating the interplanetary factors to distinguish extreme and major geomagnetic storms, Earth and Planetary Physics, 5, 180-186. doi: 10.26464/epp2021015


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010


Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011


Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Vertical Crustal Deformation Velocity and its Influencing Factors over the Qinghai-Tibet Plateau based on the Satellite Gravity Data

HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, and HeTing Jian