Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Sun, M. C., Zhu, Q. L., Dong, X., and Wu, J. J. (2022). Analysis of inversion error characteristics of stellar occultation simulation data. Earth Planet. Phys., 6(1), 61–69. http://doi.org/10.26464/epp2022013

2022, 6(1): 61-69. doi: 10.26464/epp2022013

SPACE PHYSICS

Analysis of inversion error characteristics of stellar occultation simulation data

1. 

China Research Institute of Radiowave Propagation, Qingdao 266107, China

2. 

Xidian University, Xi’an 710126, China

Corresponding author: MingChen Sun, 2297215868@qq.com

Received Date: 2021-09-27
Web Publishing Date: 2022-01-06

Atmospheric stellar occultation observation technology is an advanced space-based detection technology that can measure the vertical distribution of trace gas composition, temperature, and aerosol content in a planet’s atmosphere. In this study, an inversion algorithm of the onion-peeling method was constructed to invert the transmittance obtained from the forward mask. The method used a three-dimensional ray-tracing simulation to obtain the transmission path of the light in the Earth’s atmosphere. The relevant parameters were then combined in the high-resolution transmission molecular absorption (HITRAN) database, and line-by-line integration was performed to calculate the atmospheric transmittance. The transmittance value was then used as an input to calculate the vertical distribution of oxygen molecules when using the single-wavelength inversion of the onion-peeling method. Finally, the oxygen molecule content was compared with the value attained by the Mass Spectrometer and Incoherent Scatter Radar Extended (MSISE00) atmospheric model to determine the relative error of our model. The maximum error was found to be 0.3%, which is low enough to verify the reliability of our algorithm. Using Global-scale Observations of the Limb and Disk (GOLD) measured data to invert the oxygen number density, we calculated its relative deviation from the published result to further verify the algorithm. The inversion result was affected by factors such as prior data, the absorption spectral line type, the ellipticity of the Earth, and the accuracy of the orbit. Analysis of these error-influencing factors showed that the seasons and the Earth’s ellipticity affected the accuracy of the model only 0.001% and could therefore be ignored. However, latitude and solar activity had a greater impact on accuracy, on the order of 0.1%. The absorption line type affected the accuracy of the model by as much as 1%. All three of these factors therefore need to be considered during the inversion process.

Key words: stellar occultation; onion-peeling; GOLD; inversion; error

Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Cot, C., Kyrölä, E., Fussen, D., Tamminen, J., Leppelmeier, G. W., Sofieva, V., … Fraisse, R. (2004). First results on GOMOS/ENVISAT. Adv. Space Res., 33(7), 1029–1035. https://doi.org/10.1016/j.asr.2003.09.037

Bertaux, J. L., Vandaele, A. C., Korablev, O., Villard, E., Fedorova, A., Fussen, D., Quemerais, E., Belyaev, D., Mahieux, A., … the SPICAV/SOIR team. (2007). A warm layer in Venus' cryosphere and high-altitude measurements of HF, HCl, H2O and HDO. Nature, 450(7170), 646–649. https://doi.org/10.1038/nature05974

Bertaux, J. L., Kyrölä, E., Fussen, D., Hauchecorne, A., Dalaudier, F., Sofieva, V., Tamminen, J., Vanhellemont, F., d'Andon, O. F., … Fraisse, R. (2010). Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT. Atmos. Chem. Phys., 10(24), 12091–12148. https://doi.org/10.5194/acp-10-12091-2010

DeMajistre, R., and Yee, J. H. (2002). Atmospheric remote sensing using a combined extinctive and refractive stellar occultation technique 2. Inversion method for extinction measurements. J. Geophys. Res. :Atmos., 107(D15), ACH 6-1-ACH 6-18. https://doi.org/10.1029/2001JD000795

Eastes, R. (2009). NASA mission to explore forcing of Earth's space environment. Eos Trans. AGU, 90(18), 155. https://doi.org/10.1029/2009EO180002

Eastes, R. W., McClintock, W. E., Burns, A. G., Anderson, D. N., Andersson, L., Codrescu, M., Correira, J. T., Daniell, R. E., England, S. L., … Oberheide, J. (2017). The global-scale observations of the limb and disk (GOLD) mission. Space Sci. Rev., 212(1), 383–408. https://doi.org/10.1007/s11214-017-0392-2

Festou, M. C., Atreya, S. K., Donahue, T. M., Sandel, B. R., Shemansky, D. E., and Broadfoot, A. L. (1981). Composition and thermal profiles of the Jovian upper atmosphere determined by the Voyager Ultraviolet Stellar Occultation Experiment. J. Geophys. Res. :Space Phys., 86(A7), 5715–5725. https://doi.org/10.1029/JA086iA07p05715

Forget, F., Montmessin, F., Bertaux, J. L., González-Galindo, F., Lebonnois, S., Quémerais, E., Reberac, A., Dimarellis, E., and López-Valverde, M. A. (2009). Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res. :Planets, 114(E1), E01004. https://doi.org/10.1029/2008JE003086

Gong, X. Y., Hu, X., Wu, X. C., and Zhang, X. X. (2007). Preliminary analysis of error characteristics in atmospheric inversion of GPS radio occultation. Chin. J. Geophys., 50(4), 1017–1029. https://doi.org/10.3321/j.issn:0001-5733.2007.04.009

Greer, K. R., England, S. L., Becker, E., Rusch, D., and Eastes, R. (2018). Modeled gravity wave-like perturbations in the brightness of far ultraviolet emissions for the GOLD mission. J. Geophys. Res. :Space Phys., 123(7), 5821–5830. https://doi.org/10.1029/2018JA025501

Hays, R. G., and Roble, P. B. (1968). Stellar spectra and atmospheric composition. J. Atomos. Sci., 25, 1141–1153.

Herman, J. R., and Mentall, J. E. (1982). O2 absorption cross sections (187–225 nm) from stratospheric solar flux measurements. J. Geophys. Res. :Oceans, 87(C11), 8967–8975. https://doi.org/10.1029/JC087iC11p08967

Kyrölä, E., Tamminen, J., Leppelmeier, G. W., Sofieva, V., Hassinen, S., Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Cot, C., … Vanhellemont, F. (2004). GOMOS on Envisat: an overview. Adv. Space Res., 33(7), 1020–1028. https://doi.org/10.1016/S0273-1177(03)00590-8

Kyrölä, E., Tamminen, J., Sofieva, V., Bertaux, J. L., Hauchecorne, A., Dalaudier, F., Fussen, D., Vanhellemont, F., D'Andon, O. F., … Fraisse, R. (2010). Retrieval of atmospheric parameters from GOMOS data. Atmos. Chem. Phys., 10(23), 11881–11903. https://doi.org/10.5194/acp-10-11881-2010

Lumpe, J. D., Floyd, L. E., Herring, L. C., Gibson, S. T., and Lewis, B. R. (2007). Measurements of thermospheric molecular oxygen from the Solar Ultraviolet Spectral Irradiance Monitor. J. Geophys. Res. :Atmos., 112(D16), D16308. https://doi.org/10.1029/2006JD008076

Lumpe, J. D. , Correira, J. , Evans, J. S. , Eastes, R. , McClintock, B. , and Beland, S. (2016). Measurements of thermospheric O2 density from GOLD. In AGU Fall Meeting. American Geophysical Union.222

Ning, L. X., Wang, H. M., Cheng, P., Chu, Y. N., and Cao, D. Z. (2001). Research development on kinetic behavior of the Herzberg states of O2 in the upper atmosphere. Chin. J. Quant. Electr., 18(1), 9–15. https://doi.org/10.3969/j.issn.1007-5461.2001.01.002

Qi, R. B., He, S. K., Li, X. T., and Wang, X. Z. (2015). Simulation of TDLAS direct absorption based on HITRAN database. Spectrosc. Spect. Anal., 35(1), 172–177. https://doi.org/10.3964/j.issn.1000-0593(2015)01-0172-06

Qian, L. Y., Solomon, S. C., and Kane, T. J. (2009). Seasonal variation of thermospheric density and composition. J. Geophys. Res. :Space Phys., 114(A1), A01312. https://doi.org/10.1029/2008JA013643

Ratier, G., Levrini, G., Popescu, A., Paulsen, T., Readings, C., and Langen, J. (1999). GOMOS: Envisat’s contribution to trace gas measurements. Air Space Eur., 1(5-6), 33–39. https://doi.org/10.1016/S1290-0958(00)88868-1

Roble, R. G., and Hays, P. B. (1972). A technique for recovering the vertical number density profile of atmospheric gases from planetary occultation data. Planet. Space Sci., 20(10), 1727–1744. https://doi.org/10.1016/0032-0633(72)90194-8

Siegmund, O. H. W., McPhate, J., Curtis, T., Jelinsky, S., Vallerga, J. V., Hull, J., and Tedesco, J. (2016). Ultraviolet imaging detectors for the GOLD mission. Proc. SPIE, 9905, 99050D. https://doi.org/10.1117/12.2232219

Sun, M. C., Wu, X. C., and Hu, X. (2020a). Analysis of simulation results of orbit observation of stellar occultation technology. Spectrosc. Spect. Anal., 40(1), 298–304. https://doi.org/10.3964/j.issn.1000-0593(2020)01-0298-07

Sun, M. C., Wu, X. C., Gong, X. Y., and Hu, X. (2020b). Transmittance simulation calculation based on 3D ray tracing and HITRAN database. Spectrosc. Spect. Anal., 40(7), 2092–2097. https://doi.org/10.3964/j.issn.1000-0593(2020)07-2092-06

Swartz, W. H., Yee, J. H., Vervack, R. J. Jr., Lloyd, S. A., and Newman, P. A. (2002). Photochemical ozone loss in the Arctic as determined by MSX/UVISI stellar occultation observations during the 1999/2000 winter. J. Geophys. Res.:Atmos., 107(D20), 8296. https://doi.org/10.1029/2001JD000933

Yee, J. H., Vervack, R. J. Jr., DeMajistre, R., Morgan, F., Carbary, J. F., Romick, G. J., Morrison, D., Lloyd, S. A., DeCola, P. L., … Meng, C. I. (2002). Atmospheric remote sensing using a combined extinctive and refractive stellar occultation technique 1. Overview and proof-of-concept observations. J. Geophys. Res., 107(D14), 4213. https://doi.org/10.1029/2001JD000794

Zhang, H., and Shi, G. Y. (2000). A fast and efficient line-by-line calculation method for atmospheric absorption. Chin. J. Atmos. Sci., 24(1), 111–121. https://doi.org/10.3878/j.issn.1006-9895.2000.01.12

[1]

TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008

[2]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[3]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[4]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[5]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[6]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

[7]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

[8]

DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng, 2021: Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method, Earth and Planetary Physics, 5, 149-157. doi: 10.26464/epp2021022

[9]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[10]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[11]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[12]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Analysis of inversion error characteristics of stellar occultation simulation data

MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu