Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Takahashi, H., Carrasco, A. J., Vital, L. F. R., Rezende, L. C. A., Egito, F., Rosa, G. M., and Sampaio, A. H. R. (2021). Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil. Earth Planet. Phys., 5(5), 397–406. http://doi.org/10.26464/epp2021045

2021, 5(5): 397-406. doi: 10.26464/epp2021045

SPACE PHYSICS: IONOSPHERIC PHYSICS

Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil

1. 

Space Weather Division, National Institute for Space Research (INPE), São José dos Campos, Brazil

2. 

University of Los Andes (ULA), Mérida, Venezuela

3. 

State Key Laboratory of Space Weather, Beijing 100190, China

4. 

Federal University of Campina Grande (UFCG), Campina Grande, Brazil

5. 

Federal Institute for Education, Science and Technology Baiano (IF Baiano), Bom Jesus da Lapa, Brazil

Corresponding author: Cristiano Max Wrasse, cristiano.wrasse@inpe.br

Received Date: 2021-04-13
Web Publishing Date: 2021-08-19

OI 630.0 nm airglow observations, from a new observatory at Bom Jesus de Lapa, were used to study the interaction between EPBs (Equatorial Plasma Bubbles) and the MSTID (Medium-Scale Traveling Ionospheric Disturbance) over the Northeast region in Brazil. On the night of September 16 to 17, 2020, an EPB was observed propagating eastward, in an apparent fossil stage, until it interacted with a dark band electrified MSTID (eMSTID). After the interaction, four EPBs merged, followed by an abrupt southward development and bifurcations. Analysis of the data suggests that an eastward polarization electric field, induced by the dark band eMSTID, forced the EPB into an upward drift, growing latitudinally along the magnetic field lines and then bifurcating.

Key words: Equatorial Plasma Bubbles, Medium-Scale Traveling Ionospheric Disturbance, ionosphere, thermosphere, EPB and MSTID interaction

Aa, E., Zou, S., Ridley, A., Zhang, S. R., Coster, A. J., Erickson, P. J., Liu S. Q., and Ren, J. E. (2019). Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather, 17, 285–298. https://doi.org/10.1029/2018SW002101

Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F. Journal of Atmospheric and Solar-Terrestrial Physics, 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7

Abdu, M. A., Batista, I. S., and Bittencout, J. A. (1981). Some characteristics of equatorial spread F at the magnetic equatorial station Fortaleza. Journal of Geophysical Research: Space Physics, 86(A8), 6836–6842. https://doi.org/10.1029/JA086iA08p06836

Abdu, M. A., Medeiros, R. T., Sobral, J. H. A., and Bittencourt, J. A. (1983). Spread F Plasma bubble vertical rise velocities determined from space ionosonde observations. Journal of Geophysical Research: Space Physics, 88(A11), 9197–9204. https://doi.org/10.1029/JA088iA11p09197

Abdu, M. A., Batista, I. S., Reinisch, B. W., Souza, J. R. de, Sobral, J. H. A., Pedersen, T. R., Medeiros, A. F., Schuch, N. J., Paula, E. R. de, and Groves, K. M. (2009). Conjugate Point Equatorial Experiment (COPEX) campaign in Brazil: Electrodynamics highlights on spread F development conditions and day-to-day variability. Journal of Geophysical Research, 114(A4), A04308. https://doi.org/10.1029/2008JA013749

Aggson, T. L., Laakso, H., Maynard, N. C., and Pfaff, R. F. (1996). In situ observations of bifurcation of equatorial ionospheric plasma depletions. Journal of Geophysical Research, 101(A3), 5125–5132. https://doi.org/10.1029/95JA03837

Amorim, D. C. M., Pimenta, A. A., Bittencourt, J. A., and Fagundes, P. R. (2011). Long term study of medium-scale traveling ionospheric disturbances using oi 630 nm All-Sky imaging and ionosonde over Brazilian low latitudes. Journal of Geophysical Research, 116, A06312. https://doi.org/10.1029/2010JA016090

Barros, D., Takahashi, H., Wrasse, C. M., and Figueiredo, C. A. O. B. (2018). Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America. Annales Geophysicae, 36(1), 91–100. https://doi.org/10.5194/angeo-36-91-2018

Batista, I. S., Abdu, M. A., and Bittencourt, J. A. (1986). Equatorial F region vertical plasma drifts: Seasonal and longitudinal asymmetries in the American sector. Journal of Geophysical Research, 91, 12,055–12,064. https://doi.org/10.1029/JA091iA11p12055

Carrasco, A. J., Pimenta, A. A., Wrasse, C. M., Batista, I. S., and Takahashi, H. (2020). Why do equatorial plasma bubbles bifurcate?. Journal of Geophysical Research: Space Physics, 125, e2020JA028609. https://doi.org/10.1029/2020JA028609

Carrasco, A. J., Batista, I. S., Sobral, J. H. A., and Abdu, M. A. (2017). Spread F modeling over Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 161, 98–104. https://doi.org/10.1016/j.jastp.2017.06.015

Cosgrove, R. B., and Tsunoda, R. T. (2004). Instability of the E-F coupled nighttime midlatitude ionosphere. Journal of Geophysical Research, 109, A04305. https://doi.org/10.1029/2003JA010243

Cherniak, I., and Zakharenkova, I. (2016). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43, 11,137–11,145. https://doi.org/10.1002/2016GL071421

Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., and Barros, D. (2018). Investigation of nighttime MSTIDS observed by optical thermosphere imagers at low latitudes: Morphology, propagation direction, and wind filtering. Journal of Geophysical Research: Space Physics, 123, 7843–7857. https://doi.org/10.1029/2018JA025438

Fukushima, D., Shiokawa, K., Otsuka, Y., and Ogawa, T. (2012). Observation of equatorial nighttime medium-scale traveling ionospheric disturbances in 630-nm airglow images over 7 years. Journal of Geophysical Research, 117(A10324). https://doi.org/10.1029/2012JA017758

Haerendel, G. (1973). Theory of equatorial spread-F, Report Max-Planck Institute.222

Haerendel, G., Eccles, J. V., and Çakir, S. (1992). Theory for modelling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. Journal of Geophysical Research: Space Physics, 97, 1209–1223. https://doi.org/10.1029/91JA02226

Heelis, R. A., Kendall, P. C., Moffett, R. J., Windle, D. W., and Rishbeth, H. (1974). Electrical coupling of the E- and F- regions and its effect on F-region drifts and winds. Planetary and Space Science, 22(5), 743–756. https://doi.org/10.1016/0032-0633(74)90144-5

Huang, C. S., and Kelley, M. C. (1996). Nonlinear evolution of equatorial spread F: Gravity wave seeding of Rayleigh-Taylor instability. Journal of Geophysical Research: Space Physics, 101, 293–302. https://doi.org/10.1029/95JA02210

Huang, C.S., Foster, J. C. and Sahai, Y. (2007). Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. Journal of Geophysical Research: Space Physics., 112, A05315. https://doi.org/10.1029/2007JA012307

Huang, X., and Reinisch, B. W. (1996). Vertical electron density profiles from the Digisonde network. Advances in Space Research, 18(6), 121–129. https://doi.org/10.1016/0273-1177(95)00912-4

Huang, X., and Reinisch, B. W. (2001). Vertical electron content from ionograms in real time. Radio Science, 36(2), 335–342. https://doi.org/10.1029/1999RS002409

Hysell, D. L. (1999). Imaging coherent backscatter radar studies of equatorial spread F. Journal of Atmospheric and Solar‐Terrestrial Physics, 61, 701–716. https://doi.org/10.1016/S1364-6826(99)00020-6

Jakowski, N., Tsybulyal K., Stankov S.M., and Wehrenpfennig, A. (2005). About the Potential of GPS Radio Occultation Measurements for Exploring the Ionosphere. In: Reigber C., Lühr H., Schwintzer P., Wickert J. (eds). Earth Observation with CHAMP. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26800-6_69222

Katamzi-Joseph, Z. T., Habarulema, J. B., and Hernández-Pajares, M. (2017). Midlatitude postsunset plasmabubbles observed over Europeduring intense storms in April2000 and 2001. Space Weather, 15, 1177–1190. https://doi.org/10.1002/2017SW001674

Kelley, M. C. (2009). The Earth’s Ionosphere. Elsevier.222

Kelley, M. C., and Miller, C. A. (1997). Electrodynamics of midlatitude spread F: 3. Electrohydrodynamic waves? A new look at the role of electric fields in thermospheric wave dynamics. Journal of Geophysical Research: Space Physics, 102(A6), 11,539–11, 547. https://doi.org/10.1029/96JA03841

Krall, J., Huba, J. D., Ossakow, S. L., Joyce, G., Makela, J. J., Miller, E. S., and Kelley, M. C. (2011). Modeling of equatorial plasma bubbles triggered by non-equatorial traveling ionospheric disturbances. Geophysical Research Letters, 38(8), L08103. https://doi.org/10.1029/2011GL046890

Li, G. Z., Ning, B. Q., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., Chen, J. S. (2018). Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7–8 September 2017. Journal of Geophysical Research: Space Physics, 123, 7985–7998. https://doi.org/10.1029/2018JA025871

Li, W., Huang, L., Zhang, S., and Chai, Y. (2019). Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Sensors, 19(24), 5489. https://doi.org/10.3390/s19245489

McDonald, B. E., Ossakow, S. L., Zalesak, S. T., and Zabusky, N. J. (1981). Scale sizes and lifetimes of F region plasma cloud striations as determined by the condition of marginal stability. Journal of Geophysical Research: Space Physics, 86(A7), 5775–5784. https://doi.org/10.1029/JA086iA07p05775

Miller, C. A., Swartz, W. E., Kelley, M. C., Mendillo, M., Nottingham, D., Scali, J., and Reinisch, B. (1997). Electrodynamics of midlatitude spread F: 1. Observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes. Journal of Geophysical Research: Space Physics, 102(A6), 11,521–11,532. https://doi.org/10.1029/96JA03839

Narayanan, V. L., Gurubaran, S., Shiokawa, K., and Emperumal, K. (2016a). Shrinking equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 121(7), 6924–6935. https://doi.org/10.1002/2016JA022633

Narayanan, V. L., Gurubaran, S., and Shiokawa, K. (2016b). Direct observational evidence for the merging of equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 121, 7923–7931. https://doi.org/10.1002/2016JA022861

Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., and Fukao, S. (2007). Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and e region field-aligned irregularities at midlatitude. Journal of Geophysical Research, 112, A06317. https://doi.org/10.1029/2005JA011548

Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geophysical Research Letters, 29(15), 43.1–4. https://doi.org/10.1029/2002GL015347

Otsuka, Y., Shiokawa, K., and Ogawa, T. (2012). Disappearance of equatorial plasma bubble after interaction with mid-latitude medium-scale traveling ionospheric disturbance. Geophysical Research Letters, 39(14), L14105. https://doi.org/10.1029/2012GL052286

Pimenta, A. A., Bittencourt, J., Fagundes, P., Sahai, Y., Buriti, R., Takahashi, H., and Taylor, M. J. (2003). Ionospheric plasma bubble zonal drifts over the tropical region: a study using OI 630nm emission all-sky images. Journal of Atmospheric and Solar-Terrestrial Physics, 65(10), 1117–1126. https://doi.org/10.1016/S1364-6826(03)00149-4

Reinisch, B. W., Haines, D. M., Bibl, K., Galkin, I., Huang, X., Kitrosser, D. F., Sales, G. S., and Scali, J. L. (1997). Ionospheric sounding support of OTH radar. Radio Science, 32(4), 1681–1694. https://doi.org/10.1029/97RS00841

Reinisch, B. W., and Huang, X. (1983). Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms. Radio Science, 18(4), 477–492. https://doi.org/10.1029/RS018i003p00477

Resende, L. C. A., Denardini, C. M., Picanço, G. A. S., Moro, J., Barros, D., Figueiredo, C. A. O. B., and Silva, R. P. (2019). On developing a new ionospheric plasma index for Brazilian equatorial F region irregularities. Ann. Geophys., 37, 807–818. https://doi.org/10.5194/angeo-37-807-2019

Sivakandan, M., Chakrabarty, D., Ramkumar, T. K., Guharay, A., Taori, A., and Parihar, N. (2019). Evidence for deep ingression of the midlatitude MSTID into as low as ~3.5° magnetic latitude. Journal of Geophysical Research: Space Physics, 124, 749–764. https://doi.org/10.1029/2018JA026103

Sobral, J. H. A., Abdu, M. A., Batista, I. S., Zamlutti, C. J., and Borba, G. L. (1981). Wave disturbances in the low latitude ionosphere and equatorial ionospheric plasma depletions. Journal of Geophysical Research, 86(A3), 1374–1378. https://doi.org/10.1029/JA086iA03p01374

Shiokawa, K., Otsuka, Y., Lynn, K. J. W., Wilkinson, P., and Tsugawa, T. (2015). Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points. Earth Planets Space, 67(43), 1–12. https://doi.org/10.1186/s40623-015-0202-6

Sobral, J. H. A., Abdu, M. A., Pedersen, T. R. , Vivian M. Castilho, V. M., Arruda, D. C. S., Muella, M. T. A. H., Batista, I. S., Mascarenhas, M., Paula, E. R. de, … Bertoni, F. C. P. (2009). Ionospheric zonal velocities at conjugate points over Brazil during the Copex campaign: Experimental observations and theoretical validations. Journal of Geophysical Research: Space Physics, 114(A4), A04309. https://doi.org/10.1029/2008JA013896

Sun, Y.Y., Liu, J.Y., Tsai, H. F., and Krankowski, A. (2017). Global ionosphere map constructed by using total electron content from ground-based GNSS receiver and FORMOSAT-3/COSMIC GPS occultation experiment. GPS Solut, 21, 1583–1591. https://doi.org/10.1007/s10291-017-0635-4

Takahashi, H., Wrasse, C. M., Denardini, C. M., Pádua, M. B., Paula, E. R. de, Costa, S. M. A., Otsuka, Y., Shiokawa, K., Galera Monico, J. F., Ivo, A., Sant'Anna, N. (2016). Ionospheric TEC weather map over South America. Space Weather, 14(11), 937–949. https://doi.org/10.1002/2016SW001474

Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Abdu, M. A., Otsuka , Y., and Shiokawa, K. (2018). Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Prog Earth Planet Sci., 5, 32. https://doi.org/10.1186/s40645-018-0189-2

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., … Zvereva T. (2015). International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 67(1), 79–91. https://doi.org/10.1186/s40623-015-0228-9

Tsunoda, R. T., Saito, S., and Nguyen, T. T. (2018). Post-sunset rise of equatorial F layer — or upwelling growth?. Prog Earth Planet Sci., 5, 22. https://doi.org/10.1186/s40645-018-0179-4

Wrasse, C. M, Takahashi, H., Medeiros, A. F., Lima, L. M., Taylor, M. J, Gobbi, D., and Fechine, J. (2007). Determinação dos parâmetros de ondas de gravidade através da análise espectral de imagens de aeroluminescência. Revista Brasileira de Geofísica, 25(3), 257–265. https://doi.org/10.1590/S0102-261X2007000300003

Yokoyama, T., and Hysell, D. L. (2010). A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances. Geophysical Research Letters, 37(8), L08105. https://doi.org/10.1029/2010GL042598

Yokoyama, T., Hysell, D. L., Otsuka, Y., and Yamamoto, M. (2009). Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 114(A3), A03308. https://doi.org/10.1029/2008JA013789

Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. Journal of Geophysical Research: Space Physics, 119(10), 10474–10482. https://doi.org/10.1002/2014JA020708

Yue, X., Schreiner, W. S., Pedatella, N., Anthes, R. A., Mannucci, A. J., Straus, P. R., and Liu, J.-Y. (2014). Space weather observations by GNSS radio occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12(11), 616–621. https://doi.org/10.1002/2014SW001133

Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity. Journal of Atmospheric and Terrestrial Physics, 77(A1), 151–166. https://doi.org/10.1029/JA087iA01p00151

[1]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[2]

Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042

[3]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[4]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[5]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[6]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[7]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[8]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[9]

XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063

[10]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[11]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[12]

QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011

[13]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[14]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[15]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[16]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[17]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[18]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[19]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[20]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio