Citation:
Yao, M. J., Cui, J., Wu, X. S., Huang, Y. Y., and Wang, W. R. (2019). Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment. Earth Planet. Phys., 3(4), 283–289.doi: 10.26464/epp2019029
2019, 3(4): 283-289. doi: 10.26464/epp2019029
Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment
1. | School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China |
2. | National Astronomical Observatories of China, Chinese Academy of Sciences, Beijing 100101, China |
3. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
The Martian ionosphere is produced by a number of controlling processes, including solar extreme ultraviolet radiation (EUV) and X-ray ionization, impact ionization by precipitating electrons, and day-to-night transport. This study investigates the structural variability of the Martian ionosphere with the aid of the radio occultation (RO) experiments made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. On the dayside, the RO electron density profiles are described by the superposition of two Chapman models, representing the contributions from both the primary layer and the low-altitude secondary layer. The inferred subsolar peak electron densities and altitudes are 1.24×105 cm–3 and 127 km for the former, and 4.28×104 cm–3 and 97 km for the latter, respectively, in general agreement with previous results appropriate for the low solar activity conditions. Our results strengthen the role of solar EUV and X-ray ionization as the driving source of plasma on the dayside of Mars. Beyond the terminator, a systematic decline in ionospheric total electron content is revealed by the MAVEN RO measurements made from the terminator crossing up to a solar zenith angle of 120°. Such a trend is indicative of day-to-night plasma transport as an important source for the nightside Martian ionosphere.
Adams, D., Xu, S., Mitchell, D. L., Lillis, R. J., Fillingim, M., Andersson, L., Fowler, C., Connerney, J. E. P., Espley, J., and Mazelle, C. (2018). Using magnetic topology to probe the sources of Mars’ nightside ionosphere. Geophys. Res. Lett., 45(22), 12190–12197. https://doi.org/10.1029/2018GL080629 |
Bhardwaj, A., and Jain, S. K. (2009). Monte Carlo model of electron energy degradation in a CO2 atmosphere. J. Geophys. Res. Space Phys., 114(A11), A11309. https://doi.org/10.1029/2009JA014298 |
Bougher, S. W., Engel, S., Hinson, D. P., and Forbes, J. M. (2001). Mars Global Surveyor radio science electron density profiles: Neutral atmosphere implications. Geophys. Res. Lett., 28(16), 3091–3094. https://doi.org/10.1029/2001GL012884 |
Bougher, S. W., Engel, S., Hinson, D. P., and Murphy, J. R. (2004). MGS radio science electron density profiles: Interannual variability and implications for the Martian neutral atmosphere. J. Geophys. Res. Planets, 109(E3), E03010. https://doi.org/10.1029/2003JE002154 |
Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., … Jakosky, B. M. (2017). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: Seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res. Space Phys., 122(1), 1296–1313. https://doi.org/10.1002/2016JA023454 |
Chapman, S. (1931a). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth. Proc. Phys. Soc., 43(1), 26. https://doi.org/10.1088/0959-5309/43/1/305 |
Chapman, S. (1931b). The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating Earth Part Ⅱ. Grazing incidence. Proc. Phys. Soc., 43(5), 483–501. https://doi.org/10.1088/0959-5309/43/5/302 |
Chen, R. H., Cravens, T. E., and Nagy, A. F. (1978). The Martian ionosphere in light of the Viking observations. J. Geophys. Res., 83(A8), 3871–3876. https://doi.org/10.1029/JA083iA08p03871 |
Choi, Y. W., Kim, J., Min, K. W., Nagy, A. F., and Oyama, K. I. (1998). Effect of the magnetic field on the energetics of Mars ionosphere. Geophys. Res. Lett., 25(14), 2753–2756. https://doi.org/10.1029/98GL51839 |
Cui, J., Galand, M., Yelle, R. V., Wei, Y., and Zhang, S. J. (2015a). Day-to-night transport in the Martian ionosphere: Implications from total electron content measurements. J. Geophys. Res. Space Phys., 120(3), 2333–2346. https://doi.org/10.1002/2014JA020788 |
Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015b). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res. Planets, 120(2), 278–286. https://doi.org/10.1002/2014JE004726 |
Duru, F., Gurnett, D. A., Morgan, D. D., Winningham, J. D., Frahm, R. A., and Nagy, A. F. (2011). Nightside ionosphere of Mars studied with local electron densities: A general overview and electron density depressions. J. Geophys. Res. Space Phys., 116(A10), A10316. https://doi.org/10.1029/2011JA016835 |
Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1-4), 293–301. https://doi.org/10.1007/s11214-015-0195-2 |
Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., and Jakosky, B. M. (2015). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett., 42(21), 8846–8853. https://doi.org/10.1002/2015GL065280 |
Flynn, C. L., Vogt, M. F., Withers, P., Andersson, L., England, S., and Liu, G. P. (2017). MAVEN observations of the effects of crustal magnetic fields on electron density and temperature in the Martian dayside ionosphere. Geophys. Res. Lett., 44(21), 10812–10821. https://doi.org/10.1002/2017GL075367 |
Fowler, C. M., Andersson, L., Ergun, R. E., Morooka, M., Delory, G., Andrews, D. J., Lillis, R. J., McEnulty, T., Weber, T. D., … Jakosky, B. M. (2015). The first in situ electron temperature and density measurements of the Martian nightside ionosphere. Geophys. Res. Lett., 42(21), 8854–8861. https://doi.org/10.1002/2015GL065267 |
Fox, J. L. (1997). Upper limits to the outflow of ions at Mars: Implications for atmospheric evolution. Geophys. Res. Lett., 24(22), 2901–2904. https://doi.org/10.1029/97GL52842 |
Fox, J. L., and Yeager, K. E. (2006). Morphology of the near-terminator Martian ionosphere: A comparison of models and data. J. Geophys. Res. Space Phys., 111(A10), A10309. https://doi.org/10.1029/2006JA011697 |
Fox, J. L. (2009). Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. Planets, 114(E12), E12005. https://doi.org/10.1029/2009JE003432 |
Fox, J. L., and Yeager, K. E. (2009). MGS electron density profiles: Analysis of the peak magnitudes. Icarus, 200(2), 468–479. https://doi.org/10.1016/j.icarus.2008.12.002 |
Fox, J. L., and Weber, A. J. (2012). MGS electron density profiles: Analysis and modeling of peak altitudes. Icarus, 221(2), 1002–1019. https://doi.org/10.1016/j.icarus.2012.10.002 |
Girazian, Z., Mahaffy, P., Lillis, R. J., Benna, M., Elrod, M., Fowler, C. M., and Mitchell, D. L. (2017a). Ion densities in the nightside ionosphere of Mars: Effects of electron impact ionization. Geophys. Res. Lett., 44(22), 11248–11256. https://doi.org/10.1002/2017GL075431 |
Girazian, Z., Mahaffy, P. R., Lillis, R. J., Benna, M., Elrod, M., and Jakosky, B. M. (2017b). Nightside ionosphere of Mars: Composition, vertical structure, and variability. J. Geophys. Res. Space Phys., 122(4), 4712–4725. https://doi.org/10.1002/2016JA023508 |
Gurnett, D. A., Huff, R. L., Morgan, D. D., Persoon, A. M., Averkamp, T. F., Kirchner, D. L., Duru, F., Akalin, F., Kopf, A. J., … Picardi, G. (2008). An overview of radar soundings of the Martian ionosphere from the Mars Express spacecraft. Adv. Space Res., 41(9), 1335–1346. https://doi.org/10.1016/j.asr.2007.01.062 |
Hanson, W. B., and Mantas, G. P. (1988). Viking electron temperature measurements: Evidence for a magnetic field in the Martian ionosphere. J. Geophys. Res. Space Phys., 93(A7), 7538–7544. https://doi.org/10.1029/JA093iA07p07538 |
Hantsch, M. H., and Bauer, S. J. (1990). Solar control of the Mars ionosphere. Planet. Space Sci., 38(4), 539–542. https://doi.org/10.1016/0032-0633(90)90146-H |
Hinson, D. P., Simpson, R. A., Twicken, J. D., Tyler, G. L., and Flasar, F. M. (1999). Initial results from radio occultation measurements with Mars Global Surveyor. J. Geophys. Res. Planets, 104(E11), 2699727012. https://doi.org/10.1029/1999JE001069 |
Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., … Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett., 42(21), 9023–9030. https://doi.org/10.1002/2015GL065419 |
Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271 |
Kliore, A. J., Cain, D. L., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Rasool, S. I. (1972). The atmosphere of Mars from Mariner 9 radio occultation measurements. Icarus, 17(2), 484–516. https://doi.org/10.1016/0019-1035(72)90014-0 |
Kliore, A. J., Fjeldbo, G., Seidel, B. L., Sykes, M. J., and Woiceshyn, P. M. (1973). S band radio occultation measurements of the atmosphere and topography of Mars with Mariner 9: Extended mission coverage of polar and intermediate latitudes. J. Geophys. Res., 78(20), 4331–4351. https://doi.org/10.1029/JB078i020p04331 |
Kopf, A. J., Gurnett, D. A., Morgan, D. D., and Kirchner, D. L. (2008). Transient layers in the topside ionosphere of Mars. Geophys. Res. Lett., 35(17), L17102. https://doi.org/10.1029/2008GL034948 |
Lindal, G. F., Hotz, H. B., Sweetnam, D. N., Shippony, Z., Brenkle, J. P., Hartsell, G. V., Spear, R. T., and Michael, Jr. W. H. (1979). Viking radio occultation measurements of the atmosphere and topography of Mars: Data acquired during 1 Martian year of tracking. J. Geophys. Res. Solid Earth, 84(B14), 8443–8456. https://doi.org/10.1029/JB084iB14p08443 |
Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329 |
Martinis, C. R., Wilson, J. K., and Mendillo, M. J. (2003). Modeling day-to-day ionospheric variability on Mars. J. Geophys. Res. Space Phys., 108(A10), 1383. https://doi.org/10.1029/2003JA009973 |
Matta, M., Galand, M., Moore, L., Mendillo, M., and Withers, P. (2014). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78–88. https://doi.org/10.1016/j.icarus.2013.09.006 |
Matta, M., Mendillo, M., Withers, P., and Morgan, D. (2015). Interpreting Mars ionospheric anomalies over crustal magnetic field regions using a 2-D ionospheric model. J. Geophys. Res. Space Phys., 120(1), 766–777. https://doi.org/10.1002/2014JA020721 |
Mendillo, M., Smith, S., Wroten, J., Rishbeth, H., and Hinson, D. (2003). Simultaneous ionospheric variability on Earth and Mars. J. Geophys. Res., 108(A12), 1432. https://doi.org/10.1029/2003JA009961 |
Morgan, D. D., Gurnett, D. A., Kirchner, D. L., Fox, J. L., Nielsen, E., and Plaut, J. J. (2008). Variation of the Martian ionospheric electron density from Mars Express radar soundings. J. Geophys. Res., 113(A9), A09303. https://doi.org/10.1029/2008JA013313 |
Němec, F., Morgan, D. D., Gurnett, D. A., and Duru, F. (2010). Nightside ionosphere of Mars: Radar soundings by the Mars Express spacecraft. J. Geophys. Res., 115(E12), E12009. https://doi.org/10.1029/2010JE003663 |
Nielsen, E., Zou, H., Gurnett, D. A., Kirchner, D. L., Morgan, D. D., Huff, R., Orosei, R., Safaeinili, A., Plaut, J. J., and Picardi, G. (2006). Observations of vertical reflections from the topside Martian Ionosphere. Space Sci. Rev., 126(1-4), 373–388. https://doi.org/10.1007/s11214-006-9113-y |
Pätzold, M., Tellmann, S., Häusler, B., Hinson, D., Schaa, R., and Tyler, G. L. (2005). A sporadic third layer in the ionosphere of Mars. Science, 310(5749), 837–839. https://doi.org/10.1126/science.1117755 |
Pätzold, M., Häusler, B., Tyler, G. L., Andert, T., Asmar, S. W., Bird, M. K., Dehant, V., Hinson, D. P., Rosenblatt, P., … Remus, S. (2016). Mars express 10 years at mars: observations by the Mars express radio science experiment (MaRS). Planet. Space Sci., 127, 44–90. https://doi.org/10.1016/j.pss.2016.02.013 |
Peverall, R., Rosén, S., Peterson, J. R., Larsson, M., Al-Khalili, A., Vikor, L., Semaniak, J., Bobbenkamp, R., Le Padellec, A., … van der Zande, W. J. (2001). Dissociative recombination and excitation of |
Rishbeth, H., and Mendillo, M. (2004). Ionospheric layers of Mars and Earth. Planet. Space Sci., 52(9), 849–852. https://doi.org/10.1016/j.pss.2004.02.007 |
Safaeinili, A., Kofman, W., Mouginot, J., Gim, Y., Herique, A., Ivanov, A. B., Plaut, J. J., and Picardi, G. (2007). Estimation of the total electron content of the Martian ionosphere using radar sounder surface echoes. Geophys. Res. Lett., 34(23), L23204. https://doi.org/10.1029/2007GL032154 |
Schneider, N. M., Deighan, J. I., Stewart, A. I. F., McClintock, W. E., Jain, S. K., Chaffin, M. S., Stiepen, A., Crismani, M., Plane, J. M. C., … Jakosky, B. M. (2015). MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophys. Res. Lett., 42(12), 4755–4761. https://doi.org/10.1002/2015GL063863 |
Schunk, R. W. (1977). Mathematical structure of transport equations for multispecies flows. Rev. Geophys. Space Phys., 15(4), 429–445. https://doi.org/10.1029/RG015i004p00429 |
Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512 |
Tyler, G. L., Balmino, G., Hinson, D. P., Sjogren, W. L., Smith, D. E., Woo, R., Asmar, S. W., Connally, M. J., Hamilton, C. L., and Simpson, R. A. (1992). Radio science investigations with Mars Observer. J. Geophys. Res., 97(E5), 7759–7779. https://doi.org/10.1029/92JE00513 |
Tyler, G. L., Balmino, G., Hinson, D. P., Sjogren, W. L., Smith, D. E., Simpson, R. A., Asmar, S. W., Priest, P., and Twicken, J. D. (2001). Radio science observations with Mars Global Surveyor: Orbit insertion through one Mars year in mapping orbit. J. Geophys. Res. Planets, 106(E10), 23327–23348. https://doi.org/10.1029/2000JE001348 |
Verigin, M. I., Gringauz, K. I., Shutte, N. M., Haider, S. A., Szego, K., Kiraly, P., Nagy, A. F., and Gombosi, T. I. (1991). On the possible source of the ionization in the nighttime Martian ionosphere: 1. Phobos 2 Harp electron spectrometer measurements. J. Geophys. Res. Space Phys., 96(A11), 19307–19313. https://doi.org/10.1029/91JA00924 |
Vogt, M. F., Withers, P., Mahaffy, P. R., Benna, M., Elrod, M. K., Halekas, J. S., Connerney, J. E. P., Espley, J. R., Mitchell, D. L., … Jakosky, B. M. (2015). Ionopause-like density gradients in the Martian ionosphere: A first look with MAVEN. Geophys. Res. Lett., 42(21), 8885–8893. https://doi.org/10.1002/2015GL065269 |
Weber, T., Brain, D., Mitchell, D., Xu, S. S., Connerney, J., and Halekas, J. (2017). Characterization of low-altitude nightside Martian magnetic topology using electron pitch angle distributions. J. Geophys. Res. Space Phys., 122(10), 9777–9789. https://doi.org/10.1002/2017JA024491 |
Withers, P., and Mendillo, M. (2005). Response of peak electron densities in the Martian ionosphere to day-to-day changes in solar flux due to solar rotation. Planet. Space Sci., 53(14-15), 1401–1418. https://doi.org/10.1016/j.pss.2005.07.010 |
Withers, P., Mendillo, M., Hinson, D. P., and Cahoy, K. (2008). Physical characteristics and occurrence rates of meteoric plasma layers detected in the Martian ionosphere by the Mars Global Surveyor Radio Science Experiment. J. Geophys. Res. Space Phys., 113(A12), A12314. https://doi.org/10.1029/2008JA013636 |
Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027 |
Withers, P., Fillingim, M. O., Lillis, R. J., Häusler, B., Hinson, D. P., Tyler, G. L., Pätzold, M., Peter, K., Tellmann, S., and Witasse, O. (2012a). Observations of the nightside ionosphere of Mars by the Mars Express Radio Science Experiment (MaRS). J. Geophys. Res. Space Phys., 117(A12), A12307. https://doi.org/10.1029/2012JA018185 |
Withers, P., Fallows, K., Girazian, Z., Matta, M., Häusler, B., Hinson, D., Tyler, L., Morgan, D., Pätzold, M., … Witasse, O. (2012b). A clear view of the multifaceted dayside ionosphere of Mars. Geophys. Res. Lett., 39(18), L18202. https://doi.org/10.1029/2012GL053193 |
Withers, P., Moore, L., Cahoy, K., and Beerer, I. (2014). How to process radio occultation data: 1. From time series of frequency residuals to vertical profiles of atmospheric and ionospheric properties. Planet. Space Sci., 101, 77–88. https://doi.org/10.1016/j.pss.2014.06.011 |
Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019). The morphology of the topside Martian ionosphere: Implications on bulk ion flow. J. Geophys. Res., 124(3), 734–751. https://doi.org/10.1029/2018JE005895 |
Xu, S. S., Mitchell, D., Liemohn, M., Dong, C. F., Bougher, S., Fillingim, F., Lillis, R., McFadden, J., Mazelle, C., … Jakosky, M. (2016). Deep nightside photoelectron observations by MAVEN SWEA: Implications for Martian northern hemispheric magnetic topology and nightside ionosphere source. Geophys. Res. Lett., 43(17), 8876–8884. https://doi.org/10.1002/2016GL070527 |
Xu, S. S., Mitchell, D., Liemohn, M., Fang, X. H., Ma, Y. J., Luhmann, J., Brain, D., Steckiewicz, M., Mazelle, C., … Jakosky, B. (2017). Martian low-altitude magnetic topology deduced from MAVEN/SWEA observations. J. Geophys. Res. Space Phys., 122(2), 1831–1852. https://doi.org/10.1002/2016JA023467 |
Zhang, M. H. G., Luhmann, J. G., and Kliore, A. J. (1990). An observational study of the nightside ionospheres of Mars and Venus with radio occultation methods. J. Geophys. Res. Space Phys., 95(A10), 17095–17102. https://doi.org/10.1029/JA095iA10p17095 |
Zhang, S. J., Cui, J., Guo, P., Li, J. L., Ping, J. S., Jian, N. C., and Zhang K. F. (2015). Martian electron density profiles retrieved from Mars Express dual-frequency radio occultation measurements. Adv. Space Res., 55(9), 2177–2189. https://doi.org/10.1016/j.asr.2015.01.030 |
[1] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[2] |
Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020 |
[3] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics. doi: 10.26464/epp2020009 |
[4] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[5] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics. doi: 10.26464/epp2020010 |
[6] |
Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048 |
[7] |
WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030 |
[8] |
Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051 |
[9] |
WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001 |
[10] |
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009 |
[11] |
Su-Fang Hu, Yong Wei, 2019: Chinese Academy of Sciences’ recent activities in boosting Chinese planetary science research, Earth and Planetary Physics, 3, 459-466. doi: 10.26464/epp2019046 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)