Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73.

2018, 2(1): 67-73. doi: 10.26464/epp2018006


Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone


State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China


Key Laboratory of Active Tectonics and Volcanos, Institute of Geology,China Earthquake Administration, Beijing 100029, China


School of Earth Science and Geological Engineering, Sun Yat-Sen University, Guangzhou 510275, China

Corresponding author: ZhiKun Ren,;

Received Date: 2017-10-11
Web Publishing Date: 2017-12-26

Characteristic slip and characteristic earthquake models have been proposed for several decades. Such models have been supported recently by high-resolution offset measurements. These models suggest that slip along a fault recurs via similarly sized, large earthquakes. The inter-event strain accumulation rate (ratio of earthquake slip and preceding interseismic time period) is used here to test the characteristic earthquake model by linking the slip and timing of past earthquakes on the Haiyuan Fault. We address how the inter-event strain accumulation rate varies over multiple seismic cycles by combining paleoearthquake studies with high-resolution airborne light detection and ranging (LiDAR) data to document the timing and size of paleoearthquake displacements along the western and middle segments of the Haiyuan Fault. Our observations encompass 5 earthquake cycles. We find significant variations over time and space along the Haiyuan Fault. We observe that on the middle segment of the Haiyuan Fault the rates slow down or increase as an anti-correlated function of the rates of preceding earthquakes. Here, we propose that the inter-event strain accumulation rates on the middle segment of the Haiyuan Fault are oscillating both spatially and temporally. However, along the western segment, the inter-event strain accumulation rate is both spatially and temporally steady, which is in agreement with quasi-periodic and slip-predictable models. Finally, we propose that different fault segments within a single fault zone may behave according to different earthquake models.

Key words: Haiyuan Fault, LiDAR, inter-event strain accumulation rates variation, earthquake model

Akçiz, S. O., Ludwig, L. G., Zielke, O., and Arrowsmith, J. R. (2014). Three-dimensional investigation of a 5 m deflected swale along the San Andreas fault in the Carrizo Plain. Bull. Seism. Soc. Am., 104(6), 2799–2808. doi: 10.1785/0120120172

Burchfiel, B. C., Zhang, P. Z., Wang, Y. P., Zhang, W. Q., Song, F. M., Deng, Q. D., Molnar, P., and Royden, L. (1991). Geology of the Haiyuan Fault Zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the Northeastern Margin of the Tibetan Plateau. Tectonics, 10(6), 1091–1110. doi: 10.1029/90TC02685

Cavalié, O., Lasserre, C., Doin, M.-P., Peltzer, G., Sun, J., Xu, X., and Shen, Z.-K. (2008). Measurement of interseismic strain across the Haiyuan fault (Gansu, China), by InSAR. Earth Planet. Sci. Lett., 275(3–4), 246–257. doi: 10.1016/j.jpgl.2008.07.057

Chéry, J., and Vernant, P. (2006). Lithospheric elasticity promotes episodic fault activity. Earth Planet. Sci. Lett., 243(1–2), 211–217. doi: 10.1016/j.jpgl.2005.12.014

Deng, Q. D., Chen, S. F., Song, G. N., Zhu, S. L., Wang, Y. P., Zhang, W. Q., Jiao, D. C., Burchfiel, B. C., Molnar, P., … Zhang, P. Z. (1986). Variations in the geometry and amount of slip on the Haiyuan (Nanxihuashan) Fault zone, China and the surface rupture of the 1920 Haiyuan earthquake. In S. Das, et al. (Eds.), Earthquake Source Mechanics (pp. 169–182). Washington, DC: American Geophysical Union.

Feldl, N., and Bilham, R. (2006). Great Himalayan earthquakes and the Tibetan plateau. Nature, 444(7116), 165–170. doi: 10.1038/nature05199

Fialko, Y., Sandwell, D., Simons, M., and Rosen, P. (2005). Three-dimensional deformation caused by the Bam, Iran, earthquake and the origin of shallow slip deficit. Nature, 435(7040), 295–299. doi: 10.1038/nature03425

Fialko, Y. (2006). Interseismic strain accumulation and the earthquake potential on the southern San Andreas fault system. Nature, 441(7096): 968–971. doi: 10.1038/nature04797

Jolivet, R., Lasserre, C., Doin, M.-P., Guillaso, S., Peltzer, G., Dailu, R., Sun, J., Shen, Z.-K., and Xu, X. (2012). Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry. J. Geophys. Res.: Solid Earth, 117(B6). doi: 10.1029/2011JB008732

Klinger, Y., Etchebes, M., Tapponnier, P., and Narteau, C. (2011). Characteristic slip for five great earthquakes along the Fuyun fault in China. Nat. Geosci., 4(6), 389–392. doi: 10.1038/ngeo1158

Lasserre, C., Morel, P.-H., Gaudemer, Y., Tapponnier, P., Ryerson, F. J., King, G. C. P., Métivier, F., Kasser, M., Kashgarian, M., … Yuan, D. Y. (1999). Postglacial left slip rate and past occurrence of M≥8 earthquakes on the Western Haiyuan Fault, Gansu, China. J. Geophys. Res.: Solid Earth, 104(B8), 17633–17651. doi: 10.1029/1998JB900082

Li, C. Y., Zhang, P.-Z., Yin, J. H., and Min, W. (2009). Late Quaternary left-lateral slip rate of the Haiyuan fault, northeastern margin of the Tibetan Plateau. Tectonics, 28(5). doi: 10.1029/2008TC002302

Li, Y. C., Shan, X. J., Qu, C. Y., and Wang, Z. J. (2016). Fault locking and slip rate deficit of the Haiyuan-Liupanshan fault zone in the northeastern margin of the Tibetan Plateau. J. Geodynam., 102, 47–57. doi: 10.1016/j.jog.2016.07.005

Liu, B. (1995). 1:50, 000 Geological Map of the Eastern Segment of the Active Qilianshan Fault (Laohushan, Maomaoshan and Jinqianghe Fault) (in Chinese). Beijing: Seismological Publishing House.222

Ludwig, L.G., Akçiz, S.O., Noriega, G. R., Zielke, O., and Arrowsmith, J. R. (2010). Climate-Modulated Channel Incision and Rupture History of the San Andreas Fault in the Carrizo Plain. Science, 327(5969), 1117–1119. doi: 10.1126/science.1182837

Mazzotti, S., Leonard, L. J., Cassidy, J. F., Rogers, G. C., and Halchuk, S. (2011). Seismic hazard in western Canada from GPS strain rates versus earthquake catalog. J. Geophys. Res.: Solid Earth, 116(B12), B12310. doi: 10.1029/2011jb008213

Min, W., Zhang, P. Z., Deng, Q. D., and Mao, F. Y. (2001). Detailed study of Holocene paleoearthquakes of the Haiyuan active fault. Geol. Rev. (in Chinese), 47(1), 75–81.

Murray, J., and Segall, P. (2002). Testing time-predictable earthquake recurrence by direct measurement of strain accumulation and release. Nature, 419(6904), 287–291. doi: 10.1038/nature00984

Ran, Y. K., Duan, R. T., Deng, Q. D., Jiao, D. C., and Min, W. (1997). 3-D trench excavation and paleoseismology at Gaowanzi of the Haiyuan fault. Seism. Geol. (in Chinese), 19(2), 97–107.

Ren, Z. K., Zhang, Z. Q., Chen, T., Yan, S. L., Yin, J. H., Zhang, P. Z., Zheng, W. J., Zhang, H. P., and Li, C. Y. (2016). Clustering of offsets on the Haiyuan Fault and their relationship to paleoearthquakes. Geol. Soc. Am. Bull., 128(1–2), 3–18. doi: 10.1130/B31155.1

Scharer, K. M., Biasi, G. P., Weldon, R. J., and Fumal, T. E. (2010). Quasi-periodic recurrence of large earthquakes on the southern San Andreas fault. Geology, 38(6), 555–558. doi: 10.1130/g30746.1

Schwartz, D. P., and Coppersmith, K. J. (1984). Fault behavior and characteristic earthquakes: Examples from the Wasatch and San Andreas Fault Zones. J. Geophys. Res.: Solid Earth, 89(B7), 5681–5698. doi: 10.1029/JB089iB07p05681

Segall, P., and Harris, R. (1987). Earthquake deformation cycle on the San Andreas Fault near Parkfield, California. J. Geophys. Res.: Solid Earth, 92(B10), 10511–10525. doi: 10.1029/JB092iB10p10511

Shimazaki, K., and Nakata, T. (1980). Time-predictable recurrence model for large earthquakes. Geophys. Res. Lett., 7(4), 279–282. doi: 10.1029/GL007i004p00279

Smalley, R., Ellis, M. A., Paul, J., and Van Arsdale, R. B. (2005). Space geodetic evidence for rapid strain rates in the New Madrid seismic zone of central USA. Nature, 435(7045), 1088–1090. doi: 10.1038/nature03642

Wang, L. F., Hainzl, S., Mai, P. M. (2015). Quantifying slip balance in the earthquake cycle: Coseismic slip model constrained by interseismic coupling. J. Geophys. Res.: Solid Earth, 120(12), 8383–8403. doi: 10.1002/2015JB011987

Wang, L. F., Hainzl, S., and Mai, P. M. (2017). To which level did the 2010 M 8.8 Maule earthquake fill the pre-existing seismic gap? Geophys. J. Int., 211(1), 498–511. doi: 10.1093/gji/ggx304

Wang, M., Shen, Z. K., Niu, Z. J., Zhang, Z. S., Sun, H. R., Gan, W. J., Wang, Q., and Ren, Q. (2003). Contemporary crustal deformation of the Chinese continent and tectonic block model. Sci. China Ser. D: Earth Sci., 46(2), 25–40. doi: 10.1360/03dz0003

Weldon, R. J., Fumal, T. E. and Biasi, G. P.(2004). Wrightwood and the earthquake cycle: what a long recurrence record tell us about faults work. GSA Today, 14(9).–5173(2004)014<4:WATECW>2.0.CO;2 doi: 10.1130/1052–5173(2004)014<4:WATECW>2.0.CO;2

Weldon, R. J., Fumal, T. E., Biasi, G. P., and Scharer, K. M. (2005). Past and Future earthquakes on the San Andreas fault. Science, 308(5724), 966–967. doi: 10.1126/science.1111707

Wells, D. L., and Coppersmith, K. J. (1994). New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull. Seism. Soc. Am., 84(4), 974–1002.

Zhang, P.-Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., … You, X. Z. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812. doi: 10.1130/g20554.1

Zhang, P. Z., Molnar, P., Burchfiel, B. C., Royden, L., Wang, Y. P., Deng, Q. D., Song, F. M., Zhang, W. Q., and Jiao, D. C. (1988a). Bounds on the Holocene slip rate of the Haiyuan fault, North-Central China. Quatern. Res., 30(2), 151–164.–5894(88)90020–8 doi: 10.1016/0033–5894(88)90020–8

Zhang, P. Z., Molnar, P., Zhang, W. Q., Deng, Q. D., Wang, Y. P., Burchfiel, B. C., Song, F. M., Royden, L., and Jiao, D. C. (1988b). Bounds on the average recurrence interval of major Earthquakes along the Haiyuan Fault In North-Central China. Seism. Res. Lett., 59(3), 81–89. doi: 10.1785/gssrl.59.3.81

Zhang, P. Z., Min, W., Deng, Q. D., and Mao, F. Y. (2005). Paleoearthquake rupture behavior and recurrence of great earthquakes along the Haiyuan fault, northwestern China. Sci. China Ser. D: Earth Sci., 48(3), 364–375. doi: 10.1360/02yd0464

Zielke, O., Arrowsmith, J. R., Ludwig, L. G., and Akçiz, S. O. (2010). Slip in the 1857 and earlier large earthquakes along the Carrizo plain, San Andreas fault. Science, 327(5969), 1119–1122. doi: 10.1126/science.1182781

Zielke, O., Arrowsmith, J. R., Grant Ludwig, L., and Akciz, S. O. (2012). High-Resolution Topography-Derived Offsets along the 1857 Fort Tejon Earthquake Rupture Trace, San Andreas Fault. Bull. Seism. Soc. Am., 102(3), 1135–1154. doi: 10.1785/0120110230


XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039


Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047


LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005


Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034


Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054


XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020


JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026


QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036


YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015


Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007


JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 2020: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics, 4, 246-265. doi: 10.26464/epp2020034


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045


Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang