Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Abadi, P., Otsuka, Y., Liu, H. X., Hozumi, K., Martinigrum, D. R., Jamjareegulgarn, P., Thanh, L. T, and Otadoy, R. (2021). Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia. Earth Planet. Phys., 5(5), 387–396. http://doi.org/10.26464/epp2021049

2021, 5(5): 387-396. doi: 10.26464/epp2021049

SPACE PHYSICS: IONOSPHERIC PHYSICS

Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia

1. 

Space Science Center, Indonesian National Institute of Aeronautics and Space (LAPAN), Bandung, Indonesia

2. 

School of Electrical Engineering, Telkom University, Jl. Telekomunikasi No. 1, Kab. Bandung 40257, Indonesia

3. 

Institute for Space-Earth Environmental Research (ISEE), Nagoya University, Nagoya, Japan

4. 

Department of Earth and Planetary Science, Kyushu University, Fukuoka, Japan

5. 

National Institute of Information and Communications Technology, Tokyo, Japan

6. 

Research Institute for Sustainable Humanosphere (RISH), Kyoto University, Kyoto, Japan

7. 

King Mongkut’s Institute of Technology Ladkrabang, Prince of Chumphon Campus, Chumphon, Thailand

8. 

Institute of Geophysics, Vietnamese Academy of Science and Technology, Hanoi, Vietnam

9. 

University of San Carlos, Cebu, Philippines

Corresponding author: P. Abadi, prayitno.abadi@lapan.go.id

Received Date: 2021-01-11
Web Publishing Date: 2021-09-10

Previous studies have proposed that both the thermospheric neutral wind and the equatorial electrojet (EEJ) near sunset play important roles in the pre-reversal enhancement (PRE) mechanism. In this study, we have used observations made in the equatorial region of Southeast Asia during March–April and September–October in 2010–2013 to investigate influences of the eastward neutral wind and the EEJ on the PRE’s strength. Our analysis employs data collected by the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) satellite to determine the zonal (east-west direction) neutral wind at an altitude of ~250 km (bottomside F region) at longitudes of 90°–130°E in the dusk sector. Three ionosondes, at Chumphon (dip lat.: 3.0°N) in Thailand, at Bac Lieu (dip lat.: 1.7°N) in Vietnam, and at Cebu (dip lat.: 3.0°N) in Philippines, provided the data we have used to derive the PRE strength. Data from two magnetometers — at Phuket (dip lat.: 0.1°S) in Thailand and at Kototabang (dip lat.: 10.3°S) in Indonesia — were used to estimate the EEJ strength. Our study is focused particularly on days with magnetically quiet conditions. We have found that the eastward neutral wind and the EEJ are both closely correlated with the PRE; their cross-correlation coefficients with it are, respectively, 0.42 and 0.47. Their relationship with each other is weaker: the cross-correlation coefficient between the eastward neutral wind and the EEJ is just 0.26. Our findings suggest that both the eastward neutral wind and the EEJ near sunset are involved in the PRE mechanism. Based on the weak relationship between these two parameters, however, they appear to be significantly independent of each other. Thus, the wind and the EEJ are likely to be influencing the PRE magnitude independently, their effects balancing each other.

Key words: equatorial ionosphere; thermosphere-ionosphere couple; pre-reversal enhancement; thermospheric neutral wind; equatorial electrojet

Abadi, P., Otsuka, Y., Shiokawa, K., Husin, A., Liu, H. X., and Saito, S. (2017). Equinoctial asymmetry in the zonal distribution of scintillation as observed by GPS receivers in Indonesia. J. Geophys. Res.: Space Phys., 122(8), 8947–8958. https://doi.org/10.1002/2017JA024146

Abadi, P., Otsuka, Y., Supriadi, S., and Olla, A. (2020). Probability of ionospheric plasma bubble occurrence as a function of pre-reversal enhancement deduced from ionosondes in Southeast Asia. AIP Conf. Proc., 2226(1), 050001. https://doi.org/10.1063/5.0002321

Bittencourt, J. A., and Abdu, M. A. (1981). A theoretical comparison between apparent and real vertical ionization drift velocities in the equatorial F region. J. Geophys. Res.: Space Phys., 86(A4), 2451–2454. https://doi.org/10.1029/JA086iA04p02451

Burke, W. J., Huang, C. Y., Gentile, L. C., and Bauer, L. (2004). Seasonal-longitudinal variability of equatorial plasma bubbles. Ann. Geophys., 22(9), 3089–3098. https://doi.org/10.5194/angeo-22-3089-2004

Carter, B. A., Retterer, J. M., Yizengaw, E., Groves, K., Caton, R., McNamara, L., Bridgwood, C., Francis, M., Terkildsen, M., … Zhang, K. (2014). Geomagnetic control of equatorial plasma bubble activity modeled by the TIEGCM with Kp. Geophys. Res. Lett., 41(15), 5331–5339. https://doi.org/10.1002/2014GL060953

Dabas, R. S., Singh, L., Lakshmi, D. R., Subramanyam, P., Chopra, P., and Garg, S. C. (2003). Evolution and dynamics of equatorial plasma bubbles: relationships to ExB drift, postsunset total electron content enhancements, and equatorial electrojet strength. Radio Sci., 38(4), 1075. https://doi.org/10.1029/2001RS002586

Doornbos, E., van den Ijssel, J., Lühr, H., Förster, M., and Koppenwallner, G. (2010). Neutral density and crosswind determination from arbitrarily oriented multiaxis accelerometers on satellites. J. Space. Rock., 47(4), 580–589. https://doi.org/10.2514/1.48114

Eccles, J. V. (1998). Modeling investigation of the evening prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res.: Space Phys., 103(A11), 26709–26719. https://doi.org/10.1029/98JA02656

Eccles, J. V., St. Maurice, J. P., and Schunk, R. W. (2015). Mechanisms underlying the prereversal enhancement of the vertical plasma drift in the low-latitude ionosphere. J. Geophys. Res.: Space Phys., 120, 4950–4970. https://doi.org/10.1002/2014JA020664

Farley, D. T., Bonelli, E., Fejer, B. G., and Larsen, M. F. (1986). The prereversal enhancement of the zonal electric field in the equatorial ionosphere. J. Geophys. Res.: Space Phys., 91(A12), 13723–13728. https://doi.org/10.1029/JA091iA12p13723

Fejer, B. G. (1997). The electrodynamics of the low-latitude ionosphere: recent results and future challenges. J. Atmos. Sol. Terr. Phys., 59(13), 1465–1482. https://doi.org/10.1016/S1364-6826(96)00149-6

Fejer, B. G., Scherliess, L., and de Paula, E. R. (1999). Effects of the vertical plasma drift velocity on the generation and evolution of equatorial spread F. J. Geophys. Res.: Space Phys., 104(A9), 19859–19869. https://doi.org/10.1029/1999JA900271

Ghosh, P., Otsuka, Y., Mani, S., and Shinagawa, H. (2020). Day-to-day variation of pre-reversal enhancement in the equatorial ionosphere based on GAIA model simulations. Earth Planets Space, 72(1), 93. https://doi.org/10.1186/s40623-020-01228-9

Haerendel, G., and Eccles, J. V. (1992). The role of the equatorial electrojet in the evening ionosphere. J. Geophys. Res.: Space Phys., 97(A2), 1181–1192. https://doi.org/10.1029/91JA02227

Huang, C. S., and Hairston, M. R. (2015). The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res.: Space Phys., 120(3), 2263–2275. https://doi.org/10.1002/2014JA020735

Huang, C. S. (2018). Effects of the postsunset vertical plasma drift on the generation of equatorial spread F. Prog. Earth Planet. Sci., 5(1), 3. https://doi.org/10.1186/s40645-017-0155-4

Kelley, M. C. (2009). The Earth's Ionosphere: Plasma Physics and Electrodynamics (2nd ed). San Diego: Academic Press.222

Kelley, M. C., Ilma, R. R., and Crowley, G. (2009). On the origin of pre-reversal enhancement of the zonal equatorial electric field. Ann. Geophys., 27(5), 2053–2056. https://doi.org/10.5194/angeo-27-2053-2009

Liu, H. X., Watanabe, S., and Kondo, T. (2009). Fast thermospheric wind jet at the Earth’s dip equator. Geophys. Res. Lett., 36(8), L08103. https://doi.org/10.1029/2009GL037377

Liu, H. X., Doornbos, E., and Nakashima, J. (2016). Thermospheric wind observed by GOCE: wind jets and seasonal variations. J. Geophys. Res.: Space Phys., 121(7), 6901–6913. https://doi.org/10.1002/2016JA022938

Liu, H. X., Pedatella, N., and Hocke, K. (2017). Medium-scale gravity wave activity in the bottomside F region in tropical regions. Geophys. Res. Lett., 44(14), 7099–7105. https://doi.org/10.1002/2017GL073855

Maruyama, T., Kawamura, M., Saito, S., Nozaki, K., Kato, H., Hemmakorn, N., Boonchuk, T., Komolmis, T., and Ha Duyen, C. (2007). Low latitude ionosphere-thermosphere dynamics studies with inosonde chain in Southeast Asia. Ann. Geophys., 25(7), 1569–1577. https://doi.org/10.5194/angeo-25-1569-2007

Nozaki, K. (2009). FMCW ionosonde for the SEALION project. J. Natl. Inst. Inf. Commun. Technol., 56(1-4), 287–298.

Raghavarao, R., Wharton, L. E., Spencer, N. W., Mayr, H. G., and Brace, L. H. (1991). An equatorial temperature and wind anomaly (ETWA). Geophys. Res. Lett., 18(7), 1193–1196. https://doi.org/10.1029/91GL01561

Rishbeth, H. (1971). The F-layer dynamo. Planet. Space Sci., 19(2), 263–267. https://doi.org/10.1016/0032-0633(71)90205-4

Rishbeth, H. (1971). Polarization fields produced by winds in the equatorial F-region. Planet. Space Sci., 19(3), 357–369. https://doi.org/10.1016/0032-0633(71)90098-5

Seo, J., Walter, T., Chiou, T. Y., and Enge, P. (2009). Characteristics of deep GPS signal fading due to ionospheric scintillation for aviation receiver design. Radio Sci., 44(1), RS0A16. https://doi.org/10.1029/2008rs004077

Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., … Zvereva, T. (2015). International geomagnetic reference field: the 12th generation. Earth Planet Space, 67(1), 79. https://doi.org/10.1186/s40623-015-0228-9

Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Raja Babu, A., Sridharan, R., Devasia, C. V., and Ravindran, S. (2007). The combined effects of electrojet strength and the geomagnetic activity (K p-index) on the post sunset height rise of the F-layer and its role in the generation of ESF during high and low solar activity periods. Ann. Geophys., 25(9), 2007–2017. https://doi.org/10.5194/angeo-25-2007-2007

Uemoto, J., Maruyama, T., Saito, S., Ishii, M., and Yoshimura, R. (2010). Relationships between pre-sunset electrojet strength, pre-reversal enhancement and equatorial spread-F onset. Ann. Geophys., 28(2), 449–454. https://doi.org/10.5194/angeo-28-449-2010

Wernik, A. W., and Liu, C. H. (1974). Ionospheric irregularities causing scintillation of GHz frequency radio signals. J. Atmos. Terr. Phys., 36(5), 871–879. https://doi.org/10.1016/0021-9169(74)90032-4

[1]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[2]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[3]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[4]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[5]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[6]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[7]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[8]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[9]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[10]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[11]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

[12]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[13]

KeDeng Zhang, Hui Wang, WenBin Wang, Jing Liu, ShunRong Zhang, Cheng Sheng, 2021: Nighttime meridional neutral wind responses to SAPS simulated by the TIEGCM: A universal time effect, Earth and Planetary Physics, 5, 52-62. doi: 10.26464/epp2021004

[14]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[15]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[16]

Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032

[17]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[18]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[19]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[20]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy