Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Lai, C., Li, P. W., Xu, J. Y., Yuan, W., Yue, J., Liu, X., Masaru, K., and Qian, L. L. (2022). Joint observation of the concentric gravity wave event on the Tibetan Plateau. Earth Planet. Phys., 6(3), 219–227. http://doi.org/10.26464/epp2022029

2022, 6(3): 219-227. doi: 10.26464/epp2022029

ATMOSPHERIC PHYSICS

Joint observation of the concentric gravity wave event on the Tibetan Plateau

1. 

School of Science, Chongqing University of Posts and Telecommunications, Chongqing 400065, China

2. 

State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 110000, China

3. 

Department of Physics, Catholic University of America, Washington, DC 20064, USA

4. 

College of Mathematics and Information Science, Henan Normal University, Xinxiang 410700, China

5. 

Department of Earth and Planetary Science, Kyushu University, Fukuoka 8190395, Japan

Corresponding author: Chang Lai, laichang@cqupt.edu.cn

Received Date: 2022-03-05
Web Publishing Date: 2022-04-25

A concentric gravity wave event was captured by a photographer in Nagarzê County (90.28°N, 28.33°E) between 02:00 and 04:00 (local time) on May 11, 2019. This concentric gravity wave event was also observed by the Suomi National Polar-orbiting Partnership satellite and the all-sky airglow imager at Yangbajing station (90.5°E, 30.1°N). The temporal and spatial information on gravity waves from the photographs provided a rare opportunity to study the propagation of gravity waves over the Tibetan Plateau. According to wind and temperature data from the MERRA-2 reanalysis (Modern-Era Retrospective analysis for Research and Applications, Version 2) and empirical models (NRLMSISE-00 [Naval Research Laboratory Mass Spectrometer and Incoherent Scatter Radar Exosphere] and HWM [horizontal wind model]), we inversely derived the propagation trajectory from the observed wave pattern to the source region by using the ray-tracing method. The source of the concentric gravity wave was identified as deep convection in Bangladesh (90.6°E, 25.0°N). The maximum background wind speed in the propagation direction (31.05 m/s) was less than the phase speed of 53 m/s, which is consistent with the wind-filtering theory.

Key words: concentric gravity wave; ray-tracing method; convection source; Tibetan Plateau

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., … Susskind, J. (2003). AIRS/AMSU/HSB on the Aqua mission: design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41(2), 253–264. https://doi.org/10.1109/TGRS.2002.808356

Azeem, I., Yue, J., Hoffmann, L., Miller, S. D., Straka, W. C., III, and Crowley, G. (2015). Multisensor profiling of a concentric gravity wave event propagating from the troposphere to the ionosphere. Geophys. Res. Lett., 42(19), 7874–7880. https://doi.org/10.1002/2015GL065903

Chou, C. C., Dai, J., Kuo, C. L., and Huang, T. Y. (2016). Simultaneous observations of storm-generated sprite and gravity wave over Bangladesh. J. Geophys. Res.:Space Phys., 121(9), 9222–9233. https://doi.org/10.1002/2016JA022554

Dewan, E. M., Picard, R. H., O'Neil, R. R., Gardiner, H. A., Gibson, J., Mill, J. D., Richards, E., Kendra, M., and Gallery, W. O. (1998). MSX satellite observations of thunderstorm-generated gravity waves in mid-wave infrared images of the upper stratosphere. Geophys. Res. Lett., 25(7), 939–942. https://doi.org/10.1029/98GL00640

Eckermann, S. D. (1992). Ray-tracing simulation of the global propagation of inertia gravity waves through the zonally averaged middle atmosphere. J. Geophys. Res.:Atmos., 97(D14), 15849–15866. https://doi.org/10.1029/92jd01410

Fritts, D. C., and Yuan, L. (1989). An analysis of gravity wave ducting in the atmosphere: Eckart’s resonances in thermal and Doppler ducts. J. Geophys. Res.:Atmos., 94(D15), 18455–18466. https://doi.org/10.1029/JD094iD15p18455

Fritts, D. C., and Alexander M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003. https://doi.org/10.1029/2001RG000106

Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke, S. J., Fraser, G. J., Tsuda, T., … Vincent, R. A. (1996). Empirical wind model for the upper, middle and lower atmosphere. J. Atmos. Terr. Phys., 58(13), 1421–1447. https://doi.org/10.1016/0021-9169(95)00122-0

Hersbach, H., and Dee, D. (2016). ERA5 reanalysis is in production. ECMWF Newsletter, 147.

Hodges, R. R. Jr. (1967). Generation of turbulence in the upper atmosphere by internal gravity waves. J. Geophys. Res., 72(13), 3455–3458. https://doi.org/10.1029/JZ072i013p03455

Holton, J. R. (1992). An Introduction to Dynamic Meteorology (3rd ed). San Diego: Academic Press.222

Jones, W. L. (1969). Ray tracing for internal gravity waves. J. Geophys. Res., 74(8), 2028–2033. https://doi.org/10.1029/JB074i008p02028

Kogure, M., Yue, J., Nakamura, T., Hoffmann, L., Vadas, S. L., Tomikawa, Y., Ejiri, M. K., and Janches, D. (2020). First direct observational evidence for secondary gravity waves generated by mountain waves over the Andes. Geophys. Res. Lett., 47(17), e2020GL088845. https://doi.org/10.1029/2020GL088845

Lindzen, R. S. (1981). Turbulence and stress owing to gravity wave and tidal breakdown. J. Geophys. Res.:Oceans, 86(C10), 9707–9714. https://doi.org/10.1029/JC086iC10p09707

Liu, X., Xu, J. Y., and Yue, J. (2020). Global static stability and its relation to gravity waves in the middle atmosphere. Earth Planet. Phys., 4(5), 504–512. https://doi.org/10.26464/epp2020047

McFarlane, N. A. (1987). The effect of orographically excited gravity wave drag on the general circulation of the lower stratosphere and troposphere. J. Atmos. Sci., 44(14), 1775–1800. https://doi.org/10.1175/1520-0469(1987)044<1775:TEOOEG>2.0.CO;2

Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, D. T., Lee, T. F., and Hawkins, J. D. (2012). Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA, 109(39), 15706–15711. https://doi.org/10.1073/pnas.1207034109

Miller, S. D., Straka, W. C., III, Yue, J., Smith, S. M., Alexander, M. J., Hoffmann, L., Setvák, M., and Partain, P. T. (2015). Upper atmospheric gravity wave details revealed in nightglow satellite imagery. Proc. Natl. Acad. Sci. USA, 112(49), E6728–E6735. https://doi.org/10.1073/pnas.1508084112

Nappo, C. J. (2002). An Introduction to Atmospheric Gravity Waves (pp. 6–9). Amsterdam: Academic Press.222

Perryman, M., Lindegren, L., Kovalevsky, J., et al. (1997). The HIPPARCOS catalogue. Astron. Astrophys., 323, L49-L52.222

Picone, J. M., Hedin, A. E., Drob, D. P., and Aikin, A. C. (2002). NRLMSISE-00 empirical model of the atmosphere: statistical comparisons and scientific issues. J. Geophys. Res.:Space Phys., 107(A12), 1468. https://doi.org/10.1029/2002ja009430

Qian, L. Y., Burns, A. G., Solomon, S. C., and Wang, W. B. (2013). Annual/semiannual variation of the ionosphere. Geophys. Res. Lett., 40(10), 1928–1933. https://doi.org/10.1002/grl.50448

Regmi, R. P., Kitada, T., Dudhia, J., and Maharjan, S. (2017). Large-scale gravity current over the middle hills of the Nepal Himalaya: implications for aircraft accidents. J. Appl. Meteor. Climatol., 56(2), 371–390. https://doi.org/10.1175/JAMC-D-16-0073.1

Rienecker, M. M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., … Woollen, J. (2011). MERRA: NASA’s modern-era retrospective analysis for research and applications. J. Climate, 24(14), 3624–3648. https://doi.org/10.1175/JCLI-D-11-00015.1

Shi, G. C., Hu, X., Yao, Z. G., Guo, W. J., Sun, M. C., and Gong, X. Y. (2021). Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection. Earth Planet. Phys., 5(1), 79–89. https://doi.org/10.26464/epp2021002

Suzuki, S., Shiokawa, K., Otsuka, Y., Ogawa, T., Nakamura, K., and Nakamura, T. (2007). A concentric gravity wave structure in the mesospheric airglow images. J. Geophys. Res.:Atmos., 112(D2), D02102. https://doi.org/10.1029/2005JD006558

Suzuki, S., Vadas, S. L., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y. (2013a). Typhoon-induced concentric airglow structures in the mesopause region. Geophys. Res. Lett., 40(22), 5983–5987. https://doi.org/10.1002/2013GL058087

Suzuki, S., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y. (2013b). Evidence of gravity wave ducting in the mesopause region from airglow network observations. Geophys. Res. Lett., 40(3), 601–605. https://doi.org/10.1029/2012GL054605

Vadas, S. L., and Fritts, D. C. (2009). Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann. Geophys., 27(1), 147–177. https://doi.org/10.5194/angeo-27-147-2009

Vadas, S. L., Yue, J., She, C. Y., Stamus, P. A., and Liu, A. Z. (2009). A model study of the effects of winds on concentric rings of gravity waves from a convective plume near Fort Collins on 11 May 2004. J. Geophys. Res.:Atmos., 114(D6), D06103. https://doi.org/10.1029/2008JD010753

Wrasse, C. M., Nakamura, T., Tsuda, T., Takahashi, H., Medeiros, A. F., Taylor, M. J., Gobbi, D., Salatun, A., Suratno, … Admiranto, A. G. (2006). Reverse ray tracing of the mesospheric gravity waves observed at 23°S (Brazil) and 7°S (Indonesia) in airglow imagers. J. Atmos. Sol.-Terr. Phys., 68(2), 163–181. https://doi.org/10.1016/j.jastp.2005.10.012

Xu, J. Y., Li, Q. Z., Yue, J., Hoffmann, L., Straka, W. C., III, Wang, C. M., Liu, M. H., Yuan, W., Han, S. … Ning, B. Q. (2015). Concentric gravity waves over northern China observed by an airglow imager network and satellites. J. Geophys. Res.:Atmos., 120(21), 11058–11078. https://doi.org/10.1002/2015JD023786

Yue, J., Vadas, S. L., She, C. Y., Nakamura, T., Reising, S. C., Liu, H. L., Stamus, P., Krueger, D. A., Lyons, W., and Li, T. (2009). Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res.:Atmos., 114(D6), D06104. https://doi.org/10.1029/2008JD011244

Yue, J., Miller, S. D., Hoffmann, L., and Straka, W. C., III. (2014). Stratospheric and mesospheric concentric gravity waves over tropical cyclone Mahasen: joint AIRS and VIIRS satellite observations. J. Atmos. Sol.-Terr. Phys., 119, 83–90. https://doi.org/10.1016/j.jastp.2014.07.003

[1]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[2]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

[3]

Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030

[4]

GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong, 2021: Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection, Earth and Planetary Physics, 5, 79-89. doi: 10.26464/epp2021002

[5]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[6]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[7]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[8]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005

[9]

HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, and HeTing Jian, 2022: Vertical Crustal Deformation Velocity and its Influencing Factors over the Qinghai-Tibet Plateau based on the Satellite Gravity Data, Earth and Planetary Physics. doi: 10.26464/epp2022034

[10]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[11]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[12]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[13]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049

[14]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[15]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[16]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[17]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[18]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[19]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[20]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Joint observation of the concentric gravity wave event on the Tibetan Plateau

Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian