Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ma, Z., Gong, Y., Zhang, S. D., Luo, J. H., Zhou, Q. H., Huang, C. M., and Huang, K. M. (2020). Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019. Earth Planet. Phys., 4(5), 1–11doi: 10.26464/epp2020044

doi: 10.26464/epp2020044

ATMOSPHERIC PHYSICS

Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019

1. 

School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China

3. 

Key Laboratory of Geospace Environment and Geodesy, Ministry of Education, Wuhan 430079, China

4. 

State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan 430079, China

5. 

Electrical and Computer Engineering Department, Miami University, Oxford, Ohio 45056, USA

Corresponding author: Yun Gong, yun.gong@whu.edu.cn

Received Date: 2020-03-30
Web Publishing Date: 2020-08-01

Using Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) data in the northern hemisphere at the 10 hPa level, we compared the stratospheric evolution of temperature and geopotential height during two major sudden stratosphere warming events (SSWs) that occurred in the Arctic winter of 2018 and 2019. In the prewarming period, poleward temperature-enhanced regions were mainly located around 120°E with a displaced vortex and around 120°E and 60°W with splitting vortices. The evolution of geopotential height indicated that these temperature-enhanced regions were both on the western side of high-latitude anticyclones. In the postwarming period, the polar vortex turned from splitting to displacement in the 2018 SSW but from displacement to splitting in the 2019 SSW. Both transitions were observed over the Atlantic region, which may have been caused by anticyclones moving through the polar region. Our findings revealed that the evolution of the anticyclone is important during SSWs and is closely related to temperature-enhanced regions in the prewarming periods and to transitions of the polar vortices in postwarming periods.

Key words: sudden stratosphere warming; transitions of the polar vortex; anticyclone; Atlantic region

Albers, J. R., and Birner, T. (2014). Vortex preconditioning due to planetary and gravity waves prior to sudden stratospheric warmings. J. Atmos. Sci., 71(11), 4028–4054. https://doi.org/10.1175/JAS-D-14-0026.1

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics. San Diego, Calif.: Academic Press.222

Ayarzagüena, B., Langematz, U., and Serrano, E. (2011). Tropospheric forcing of the stratosphere: A comparative study of the two different major stratospheric warmings in 2009 and 2010. J. Geophys. Res. Atmos., 116(D18), D18114. https://doi.org/10.1029/2010JD015023

Azeem, S. M. I., Talaat, E. R., Sivjee, G. G., Liu, H. L., and Roble, R. G. (2005). Observational study of the 4-day wave in the mesosphere preceding the sudden stratospheric warming events during 1995 and 2002. Geophys. Res. Lett., 32(15), L15804. https://doi.org/10.1029/2005GL023393

Butler, A. H., Sjoberg, J. P., Seidel, D. J., and Rosenlof, K. H. (2017). A sudden stratospheric warming compendium. Earth Syst. Sci. Data, 9(1), 63–76. https://doi.org/10.5194/essd-9-63-2017

Cao, C., Chen, Y. H., Rao, J., Liu, S. M., Li, S. Y., Ma, M. H., and Wang, Y. B. (2019). Statistical characteristics of major sudden stratospheric warming events in CESM1-WACCM: A comparison with the JRA55 and NCEP/NCAR reanalyses. Atmosphere, 10(9), 519. https://doi.org/10.3390/atmos10090519

Charlton, A. J., and Polvani, L. M. (2007). A new look at stratospheric sudden warmings. Part I: Climatology and modeling benchmarks. J. Climate, 20(3), 449–469. https://doi.org/10.1175/JCLI3996.1

Choi, H., Kim, B. M., and Choi, W. (2019). Type classification of sudden stratospheric warming based on pre- and postwarming periods. J. Climate, 32(8), 2349–2367. https://doi.org/10.1175/JCLI-D-18-0223.1

Choi, H., Choi, W., Kim, S. J., and Kim, B. M. (2020). Dependence of sudden stratospheric warming type-transition on preceding North Atlantic Oscillation conditions. Atmos. Sci. Lett., 21(3), e953. https://doi.org/10.1002/asl.953

Cohen, J., and Jones, J. (2011). Tropospheric precursors and stratospheric warmings. J. Climate, 24(24), 6562–6572. https://doi.org/10.1175/2011JCLI4160.1

Coy, L., and Pawson, S. (2015). The major stratospheric sudden warming of January 2013: Analyses and Forecasts in the GEOS-5 Data Assimilation System. Mon. Wea. Rev., 143(2), 491–510. https://doi.org/10.1175/MWR-D-14-00023.1

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., … Vitart, F. (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137(656), 553–597. https://doi.org/10.1002/qj.828

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., … Zhao, B. (2017). The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2). J. Climate, 30(14), 5419–5454. https://doi.org/10.1175/JCLI-D-16-0758.1

Goncharenko, L. P., Coster, A. J., Plumb, R. A., and Domeisen, D. I. V. (2012). The potential role of stratospheric ozone in the stratosphere-ionosphere coupling during stratospheric warmings. Geophys. Res. Lett., 39(8), L08101. https://doi.org/10.1029/2012GL051261

Gong, Y., Zhou, Q. H., and Zhang, S. D. (2013). Atmospheric tides in the low-latitude E and F regions and their responses to a sudden stratospheric warming event in January 2010. J. Geophys. Res. Space Phys., 118(12), 7913–7927. https://doi.org/10.1002/2013JA019248

Gong, Y., Zhou, Q. H., Zhang, S. D., Aponte, N., and Sulzer, M. (2016). An incoherent scatter radar study of the midnight temperature maximum that occurred at Arecibo during a sudden stratospheric warming event in January 2010. J. Geophys. Res. Space Phys., 121(6), 5571–5578. https://doi.org/10.1002/2016JA022439

Gong, Y., Ma, Z., Lv, X. D., Zhang, S. D., Zhou, Q. H., Aponte, N., and Sulzer, M. (2018a). A study on the quarterdiurnal tide in the thermosphere at Arecibo during the February 2016 sudden stratospheric warming event. Geophys. Res. Lett., 45(23), 13142–13149. https://doi.org/10.1029/2018GL080422

Gong, Y., Li, C., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Li, G. Z., and Ning, B. Q. (2018b). Study of the quasi-5-day wave in the MLT region by a meteor radar chain. J. Geophys. Res. Atmos., 123(17), 9474–9487. https://doi.org/10.1029/2018JD029355

Gong, Y., Wang, H. L., Ma, Z., Zhang, S. D., Zhou, Q. H., Huang, C. M., and Huang, K. M. (2019). A statistical analysis of the propagating quasi 16-day waves at high latitudes and their response to sudden stratospheric warmings from 2005 to 2018. J. Geophys. Res. Atmos., 124(23), 12617–12630. https://doi.org/10.1029/2019JD031482

Harada, Y., Goto, A., Hasegawa, H., Fujikawa, N., Naoe, H., and Hirooka, T. (2010). A major stratospheric sudden warming event in January 2009. J. Atmos. Sci., 67(6), 2052–2069. https://doi.org/10.1175/2009JAS3320.1

Harada, Y., and Hirooka, T. (2017). Extraordinary features of the planetary wave propagation during the boreal winter 2013/2014 and the zonal wave number two predominance. J. Geophys. Res. Atmos., 122(21), 11374–11387. https://doi.org/10.1002/2017JD027053

Harada, Y., Sato, K., Kinoshita, T., Yasui, R., Hirooka, T., and Naoe, H. (2019). Diagnostics of a WN2-type major sudden stratospheric warming event in February 2018 using a new three-dimensional wave activity flux. J. Geophys. Res. Atmos., 124(12), 6120–6142. https://doi.org/10.1029/2018JD030162

Harvey, V. L., and Hitchman, M. H. (1996). A climatology of the Aleutian High. J. Atmos. Sci., 53(14), 2088–2102. https://doi.org/10.1175/1520-0469(1996)053<2088:ACOTAH>2.0.CO;2

Harvey, V. L., Pierce, R. B., Fairlie, T. D., and Hitchman, M. H. (2002). A climatology of stratospheric polar vortices and anticyclones. J. Geophys. Res. Atmos., 107(D20), ACL 10-1–ACL 10-22. https://doi.org/10.1029/2001JD001471

Hu, J. G., Ren, R. C., and Xu, H. M. (2014). Occurrence of winter stratospheric sudden warming events and the seasonal timing of spring stratospheric final warming. J. Atmos. Sci., 71(7), 2319–2334. https://doi.org/10.1175/JAS-D-13-0349.1

Karpechko, A. Y., Charlton-Perez, A., Balmaseda, M., Tyrrell, N., & Vitart, F. (2018). Predicting sudden stratospheric warming 2018 and its climate impacts with a multimodel ensemble. Geophys. Res. Lett., 45(24), 13538–13546. https://doi.org/10.1029/2018GL081091

King, A. D., Butler, A. H., Jucker, M., Earl, N. O., and Rudeva, I. (2019). Observed relationships between sudden stratospheric warmings and European climate extremes. J. Geophys. Res. Atmos., 124(24), 13943–13961. https://doi.org/10.1029/2019JD030480

Kozubek, M., Krizan, P., and Lastovicka, J. (2015). Northern Hemisphere stratospheric winds in higher midlatitudes: longitudinal distribution and long-term trends. Atmos. Chem. Phys., 15(4), 2203–2213. https://doi.org/10.5194/acp-15-2203-2015

Kuttippurath, J., and Nikulin, G. (2012). A comparative study of the major sudden stratospheric warmings in the Arctic winters 2003/2004-2009/2010. Atmos. Chem. Phys., 12(17), 8115–8129. https://doi.org/10.5194/acp-12-8115-2012

Lastovicka, J., Krizan, P., and Kozubek, M. (2018). Longitudinal structure of stationary planetary waves in the middle atmosphere-extraordinary years. Ann. Geophys., 36(1), 181–192. https://doi.org/10.5194/angeo-36-181-2018

Lee, S. H., Charlton-Perez, A. J., Furtado, J. C., and Woolnough, S. J. (2019). Abrupt stratospheric vortex weakening associated with North Atlantic anticyclonic wave breaking. J. Geophys. Res. Atmos., 124(15), 8563–8575. https://doi.org/10.1029/2019JD030940

Lee, S. H., and Butler, A. H. (2020). The 2018-2019 Arctic stratospheric polar vortex. Weather, 75(2), 52–57. https://doi.org/10.1002/wea.3643

Li, N., Luan, X. L., Lei, J. H., Bolaji, O. S., Owolabi, C., Chen, J. S., Xu, Z. W., Li, G. Z., and Ning, B. Q. (2020). Variations of mesospheric neutral winds and tides observed by a meteor radar chain over China during the 2013 sudden stratospheric warming. J. Geophys. Res. Space Phys., 125(5), e2019JA027443. https://doi.org/10.1029/2019JA027443

Liu, G. Q., Huang, W. G., Shen, H., Aa, E. C., Li, M. X., Liu, S. Q., and Luo, B. X. (2019). Ionospheric response to the 2018 sudden stratospheric warming event at middle- and low-latitude stations over China sector. Space Wea., 17(8), 1230–1240. https://doi.org/10.1029/2019SW002160

Liu, S. M., Chen, Y. H., Rao, J., Cao, C., Li, S. Y., Ma, M. H., and Wang, Y. B. (2019). Parallel comparison of major sudden stratospheric warming events in CESM1-WACCM and CESM2-WACCM. Atmosphere, 10(11), 679. https://doi.org/10.3390/atmos10110679

Liu, Y., and Zhang, Y. L. (2014). Overview of the major 2012-2013 northern hemisphere stratospheric sudden warming: evolution and its association with surface weather. J. Meteor. Res., 28(4), 561–575. https://doi.org/10.1007/s13351-014-3065-z

Lü, Z. Z., Li, F., Orsolini, Y. J., Gao, Y. Q., and He, S. P. (2020). Understanding of European cold extremes, sudden stratospheric warming, and Siberian snow accumulation in the Winter of 2017/18. J. Climate, 33(2), 527–545. https://doi.org/10.1175/JCLI-D-18-0861.1

Lu, X., Wu, H. N., Oberheide, J., Liu, H. L., and McInerney, J. M. (2018). Latitudinal double-peak structure of stationary planetary wave 1 in the austral winter middle atmosphere and its possible generation mechanism. J. Geophys. Res. Atmos., 123(20), 11551–11568. https://doi.org/10.1029/2018JD029172

Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Yu, Y., Li, G. Z., Ning, B. Q., and Li, C. (2017). Responses of Quasi 2 day waves in the MLT region to the 2013 SSW revealed by a meteor radar chain. Geophys. Res. Lett., 44(18), 9142–9150. https://doi.org/10.1002/2017GL074597

Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Dong, W. J., Li, G. Z., and Ning, B. Q. (2018). Study of mean wind variations and gravity wave forcing via a meteor radar chain and comparison with HWM-07 results. J. Geophys. Res. Atmos., 123(17), 9488–9501. https://doi.org/10.1029/2018JD028799

Ma, Z., Gong, Y., Zhang, S. D., Zhou, Q. H., Huang, C. M., Huang, K. M., Luo, J. H., Yu, Y., and Li, G. Z. (2020). Study of a quasi-4 day oscillation during the 2018/2019 SSW over Mohe, China. J. Geophys. Res. Space Phys.. https://doi.org/10.1029/2019JA027687

Manney, G. L., Schwartz, M. J., Krüger, K., Santee, M. L., Pawson, S., Lee, J. N., Daffer, W. H., Fuller, R. A., and Livesey, N. J. (2009). Aura Microwave Limb Sounder observations of dynamics and transport during the record-breaking 2009 Arctic stratospheric major warming. Geophys. Res. Lett., 36(12), L12815. https://doi.org/10.1029/2009GL038586

Matsuno, T. (1971). A dynamical model of the stratospheric sudden warming. J. Atmos. Sci., 28(8), 1479–1494. https://doi.org/10.1175/1520-0469(1971)028<1479:ADMOTS>2.0.CO;2

Mitchell, D. M., Gray, L. J., Anstey, J., Baldwin, M. P., and Charlton-Perez, A. J. (2013). The influence of stratospheric vortex displacements and splits on surface climate. J. Climate, 26(8), 2668–2682. https://doi.org/10.1175/JCLI-D-12-00030.1

Nath, D., Chen, W., Zelin, C., Pogoreltsev, A. L., and Wei, K. (2016). Dynamics of 2013 Sudden Stratospheric Warming event and its impact on cold weather over Eurasia: Role of planetary wave reflection. Sci. Rep., 6, 24174. https://doi.org/10.1038/srep24174

Rao, J., Ren, R. C., Chen, H. S., Yu, Y. Y., and Zhou, Y. (2018). The stratospheric sudden warming event in February 2018 and its prediction by a climate system model. J. Geophys. Res. Atmos., 123(23), 13332–13345. https://doi.org/10.1029/2018JD028908

Rao, J., Ren, R. C., Chen, H. S., Liu, X. W., Yu, Y. Y., Hu, J. G., and Zhou, Y. (2019a). Predictability of stratospheric sudden warmings in the Beijing Climate Center Forecast System with statistical error corrections. J. Geophys. Res. Atmos., 124(15), 8385–8400. https://doi.org/10.1029/2019JD030900

Rao, J., Garfinkel, C. I., Chen, H. S., and White, I. P. (2019b). The 2019 New Year stratospheric sudden warming and its real-time predictions in multiple S2S models. J. Geophys. Res. Atmos., 124(21), 11155–11174. https://doi.org/10.1029/2019JD030826

Rao, J., Garfinkel, C. I., & White, I. P. (2020). Predicting the downward and surface influence of the February 2018 and January 2019 sudden stratospheric warming events in subseasonal to seasonal (S2S) models. J. Geophys. Res. Atmos., 125(2), e2019JD031919. https://doi.org/10.1029/2019JD031919

Seviour, W. J. M., Mitchell, D. M., and Gray, L. J. (2013). A practical method to identify displaced and split stratospheric polar vortex events. Geophys. Res. Lett., 40(19), 5268–5273. https://doi.org/10.1002/grl.50927

Shi, C. H., Xu, T., Guo, D., and Pan, Z. T. (2017). Modulating effects of planetary wave 3 on a stratospheric sudden warming event in 2005. J. Atmos. Sci., 74(5), 1549–1559. https://doi.org/10.1175/JAS-D-16-0065.1

Xiong, J. G., Wan, W. X, Ding, F., Liu, L. B., Hu, L. H., and Yan, C. X. (2018). Two day wave traveling westward with wave number 1 during the sudden stratospheric warming in January 2017. J. Geophys. Res. Space Phys., 123(4), 3005–3013. https://doi.org/10.1002/2017JA025171

[1]

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics. doi: 10.26464/epp2020046

[2]

JinQiang Zhang, Yi Liu, HongBin Chen, ZhaoNan Cai, ZhiXuan Bai, LingKun Ran, Tao Luo, Jing Yang, YiNan Wang, YueJian Xuan, YinBo Huang, XiaoQing Wu, JianChun Bian, DaRen Lu, 2019: A multi-location joint field observation of the stratosphere and troposphere over the Tibetan Plateau, Earth and Planetary Physics, 3, 87-92. doi: 10.26464/epp2019017

[3]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[4]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[5]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[6]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[7]

Chao Xiao, WenLong Liu, DianJun Zhang, Zhao Zhang, 2020: A normalized statistical study of Earth’s cusp region based on nine-years of Cluster measurements, Earth and Planetary Physics, 4, 266-273. doi: 10.26464/epp2020031

[8]

JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024

[9]

Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Comparison of stratospheric evolution during the major sudden stratospheric warming events in 2018 and 2019

Zheng Ma, Yun Gong, ShaoDong Zhang, JiaHui Luo, QiHou Zhou, ChunMing Huang, KaiMing Huang