Citation:
Xi, X. Y., Ding, M., and Zhu, M. H. (2022). Groove formation on Phobos from reimpacting orbital ejecta of the Stickney crater. Earth Planet. Phys., 6(3), 294–303. http://doi.org/10.26464/epp2022027
2022, 6(3): 294-303. doi: 10.26464/epp2022027
Groove formation on Phobos from reimpacting orbital ejecta of the Stickney crater
1. | State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau, China |
2. | China National Space Administration, Macau Center for Space Exploration and Science, Macau, China |
Numerous linear grooves have long been recognized as covering the surface of Phobos, but the mechanisms of their formation are still unclear. One possible mechanism is related to the largest crater on Phobos, the Stickney crater, whose impact ejecta may slide, roll, bounce, and engrave groove-like features on Phobos. When the launch velocity is higher than the escape velocity, the impact ejecta can escape Phobos. A portion of these high-velocity ejecta are dragged by the gravitational force of Mars, fall back, and reimpact Phobos. In this research, we numerically test the hypothesis that the orbital ejecta of the Stickney crater that reimpact Phobos could be responsible for a particular subset of the observed grooves on Phobos. We adopt impact hydrocode iSALE-2D (impact-Simplified Arbitrary Lagrangian Eulerian, two-dimensional) to simulate the formation of the Stickney crater and track its impact ejecta, with a focus on orbital ejecta with launch velocities greater than the escape velocity of Phobos. The launch velocity distribution of the ejecta particles is then used to calculate their trajectories in space and determine their fates. For orbital ejecta reimpacting Phobos, we then apply the sliding boulder model to calculate the ejecta paths, which are compared with the observed groove distribution and length to search for causal relationships. Our ejecta trajectory calculations suggest that only ~1% of the orbital ejecta from the Stickney crater can reimpact Phobos. Applying the sliding boulder model, we predict ejecta sliding paths of 9−20 km in a westward direction to the east of the zone of avoidance, closely matching the observed grooves in that region. The best-fit model assumes an ejecta radius of ~150 m and a speed restitution coefficient of 0.3, consistent with the expected ejecta and regolith properties. Our calculations thus suggest the groove class located to the east of the zone of avoidance may have been caused by reimpact orbital ejecta from the Stickney crater.
Andert, T. P., Rosenblatt, P., Pätzold, M., Häusler, B., Dehant, V., Tyler, G. L., and Marty, J. C. (2010). Precise mass determination and the nature of Phobos. Geophys. Res. Lett., 37(9), L09202. https://doi.org/10.1029/2009GL041829 |
Asphaug, E., and Melosh, H. J. (1993). The Stickney impact of Phobos: a dynamical model. Icarus, 101(1), 144–164. https://doi.org/10.1006/icar.1993.1012 |
Asphaug, E., and Benz, W. (1994). The Surface and Interior of Phobos. Houston, Texas: Lunar and Planetary Institute.222 |
Banaszkiewicz, M., and Ip, W. H. (1991). A statistical study of impact ejecta distribution around Phobos and Deimos. Icarus, 90(2), 237–253. https://doi.org/10.1016/0019-1035(91)90104-2 |
Basilevsky, A. T., Lorenz, C. A., Shingareva, T. V., Head, J. W., Ramsley, K. R., and Zubarev, A. E. (2014). The surface geology and geomorphology of Phobos. Planet. Space Sci., 102, 95–118. https://doi.org/10.1016/j.pss.2014.04.013 |
Benz, W., Cameron, A. G. W., and Melosh, H. J. (1989). The origin of the Moon and the single-impact hypothesis III. Icarus, 81(1), 113–131. https://doi.org/10.1016/0019-1035(89)90129-2 |
Brož, M., Vokrouhlický, D., Bottke, W. F., Nesvorný, D., Morbidelli, A., and Čapek, D. (2005). Non-gravitational forces acting on small bodies. In Proceedings of the International Astronomical Union (pp. 351–365). Paris: International Astronomical Union.222 |
Bruck Syal, M., Rovny, J., Owen, J. M., and Miller, P. L. (2016). Excavating Stickney crater at Phobos. Geophys. Res. Lett., 43(20), 10595–10601. https://doi.org/10.1002/2016GL070749 |
Burns, J. A. (1978). The dynamical evolution and origin of the Martian moons. Vistas Astron., 22, 193–210. https://doi.org/10.1016/0083-6656(78)90015-6 |
Çelik, O., Baresi, N., Ballouz, R. L., Ogawa, K., Wada, K., and Kawakatsu, Y. (2019). Ballistic deployment from quasi-satellite orbits around Phobos under realistic dynamical and surface environment constraints. Planet. Space Sci., 178, 104693. https://doi.org/10.1016/j.pss.2019.06.010 |
Cintala, M. J., Berthoud, L., and Hörz, F. (1999). Ejection-velocity distributions from impacts into coarse-grained sand. Meteorit. Planet. Sci., 34(4), 605–623. https://doi.org/10.1111/j.1945-5100.1999.tb01367.x |
Collins, G. S., Melosh, H. J., and Ivanov, B. A. (2004). Modeling damage and deformation in impact simulations. Meteorit. Planet. Sci., 39(2), 217–231. https://doi.org/10.1111/j.1945-5100.2004.tb00337.x |
Davis, D. R., Housen, K. R., and Greenberg, R. (1981). The unusual dynamical environment of Phobos and Deimos. Icarus, 47(2), 220–233. https://doi.org/10.1016/0019-1035(81)90168-8 |
Dobrovolskis, A. R., and Burns, J. A. (1980). Life near the Roche limit: behavior of ejecta from satellites close to planets. Icarus, 42(3), 422–441. https://doi.org/10.1016/0019-1035(80)90105-0 |
Duxbury, T. C., and Veverka, J. (1977). Viking imaging of Phobos and Deimos: an overview of the primary mission. J. Geophys. Res., 82(28), 4203–4211. https://doi.org/10.1029/JS082i028p04203 |
Fujiwara, A., and Asada, N. (1983). Impact fracture patterns on Phobos ellipsoids. Icarus, 56(3), 590–602. https://doi.org/10.1016/0019-1035(83)90176-8 |
Gault, D. E., Shoemaker, E. M., and Moore, H. J. (1963). Spray Ejected from the Lunar Surface by Meteoroid Impact. Washington, DC: NASA.222 |
Hamelin, M. (2011). Motion of blocks on the surface of Phobos: new constraints for the formation of grooves. Icarus, 59(13), 1293–1307. https://doi.org/10.1016/j.pss.2010.05.023 |
Ivanov, B. A., Melosh, H. J., and Pierazzo, E. (2010). Basin-forming impacts: reconnaissance modeling. In R. L. Gibson, et al. (Eds.), Large Meteorite Impacts and Planetary Evolution IV (pp. 29–49). Boulder, Colorado: Geological Society of America.222 |
Karachevtseva, I. P., Oberst, J., Zubarev, A. E., Nadezhdina, I. E., Kokhanov, A. A., Garov, A. S., Uchaev, D. V., Uchaev, D. V., Malinnikov, V. A., and Klimkin, N. D. (2014). The Phobos information system. Planet. Space Sci., 102, 74–85. https://doi.org/10.1016/j.pss.2013.12.015 |
Kuramoto, K., Kawakatsu, Y., Fujimoto, M., Araya, A., Barucci, M. A., Genda, H., Hirata, N., Ikeda, H., Imamura, T., … Yokota, S. (2021). Martian moons exploration MMX: sample return mission to Phobos elucidating formation processes of habitable planet.222 |
Lucchetti, A., Cremonese, G., Pajola, M., and Massironi, M., and Simioni, E. (2015). New simulation of Phobos Stickney crater [Presentation]. 46th Lunar and Planetary Science Conference, The Woodlands, Texas.222 |
Luther, R., Zhu, M. H., and Collins, G., and Wünnemann, K. (2018). Effect of target properties and impact velocity on ejection dynamics and ejecta deposition. Meteorit. Planet. Sci., 53(8), 1705–1732. https://doi.org/10.1111/maps.13143 |
Maxwell, D. E. (1977). Simple Z model for cratering, ejection, and the overturned flap. In D. J. Roddy, et al. (Eds.), Impact and Explosion Cratering: Planetary and Terrestrial Implications (pp. 1003–1008). New York: Pergamon Press.222 |
Melosh, H. J. (1989). Impact Cratering: A Geologic Process. New York: Oxford University Press.222 |
Miljković, K., Wieczorek, M. A., Collins, G. S., Laneuville, M., Neumann, G. A., Melosh, H. J., Solomon, S. C., Phillips, R. J., Smith, D. E., and Zuber, M. T. (2013). Asymmetric distribution of lunar impact basins caused by variations in target properties. Science, 342(6159), 724–726. https://doi.org/10.1126/science.1243224 |
Miyamoto, H., Niihara, T., Wada, K., Ogawa, K., Senshu, H., Michel, P., .. Willner, K. (2021). Surface environment of Phobos and Phobos simulant UTPS. Earth,Planets and Space, 73(1), 1–17. https://doi.org/10.1186/s40623-021-01406-3 |
Murray, J. B., and Iliffe, J. C. (2011). Morphological and geographical evidence for the origin of Phobos’ grooves from HRSC Mars Express images. In M. R. Balme, et al. (Eds.), Martian Geomorphology (pp. 21–41). London: Geological Society London.222 |
Murray, J. B., and Heggie, D. C. (2014). Character and origin of Phobos’ grooves. Planet. Space Sci., 12, 119–143. https://doi.org/10.1016/j.pss.2014.03.001 |
Nayak, M., and Asphaug, E. (2016). Sesquinary catenae on the Martian satellite Phobos from reaccretion of escaping ejecta. Nat. Commun., 7, 12591. https://doi.org/10.1038/ncomms12591 |
Nayak, M. (2018). Sesquinary reimpacts dominate surface characteristics on Phobos. Icarus, 300, 145–149. https://doi.org/10.1016/j.icarus.2017.08.039 |
Pollack, J. B., and Burns, J. A. (1977). An origin by capture for the Martian satellites. Bull. Am. Astron. Soc., 9, 518–519. |
Ramsley, K. R., and Head, J. W., III (2013). The origin of Phobos grooves from ejecta launched from impact craters on Mars: tests of the hypothesis. Planet. Space Sci., 75, 69–95.222 |
Ramsley, K. R., and Head, J. W. (2017). The Stickney crater ejecta secondary impact crater spike on Phobos: implications for the age of Stickney and the surface of Phobos. Planet. Space Sci., 138, 7–24. https://doi.org/10.1016/j.pss.2017.02.004 |
Ramsley, K. R., and Head, J. W. (2019). Origin of Phobos grooves: testing the Stickney crater ejecta model. Planet. Space Sci., 165, 137–147. https://doi.org/10.1016/j.pss.2018.11.004 |
Schmedemann, N., Michael, G. G., Ivanov, B. A., Murray, J. B., and Neukum, G. (2014). The age of Phobos and its largest crater, Stickney. Planet. Space Sci., 102, 152–163. https://doi.org/10.1016/j.pss.2014.04.009 |
Stooke, P. (2012). Stooke small bodies maps V2.0. MULTI-SA-MULTI-6-STOOKEMAPS-V2.0. NASA planetary data system. Washington, DC: NASA.222 |
Takemura, T., Miyamoto, H., Hemmi, R., Niihara, T., and Michel, P. (2021). Small-scale topographic irregularities on Phobos: image and numerical analyses for MMX mission. Earth, Planets Space, 73(1), 213.222 |
Thomas, P., Veverka, J., Bloom, A., and Duxbury, T. (1979). Grooves on Phobos: their distribution, morphology and possible origin. J. Geophys. Res.:Solid Earth, 84(B14), 8457–8477. https://doi.org/10.1029/JB084iB14p08457 |
Thomas, P. C. (1993). Gravity, tides, and topography on small satellites and asteroids: Application to surface features of the Martian satellites. Icarus, 105(2), 326–344. https://doi.org/10.1006/icar.1993.1130 |
Thomas, P. C. (1998). Ejecta emplacement on the Martian satellites. Icarus, 131(1), 78–106. https://doi.org/10.1006/icar.1997.5858 |
Willner, K., Oberst, J., Hussmann, H., Giese, B., Hoffmann, H., Matz, K. D., Roatsch, T., and Duxbury, T. (2010). Phobos control point network, rotation, and shape. Earth Planet. Sci. Lett., 294(3-4), 541–546. https://doi.org/10.1016/j.jpgl.2009.07.033 |
Wilson, L., and Head, J. W. (2015). Groove formation on Phobos: Testing the Stickney ejecta emplacement model for a subset of the groove population. Planet. Space Sci., 105, 26–42. https://doi.org/10.1016/j.pss.2014.11.001 |
Wünnemann, K., Collins, G. S., and Melosh, H. J. (2006). A strain-based porosity model for use in hydrocode simulations of impacts and implications for transient crater growth in porous targets. Icarus, 180(2), 514–527. https://doi.org/10.1016/j.icarus.2005.10.013 |
Wünnemann, K., Zhu, M. H., and Stöffler, D. (2016). Impacts into quartz sand: crater formation, shock metamorphism, and ejecta distribution in laboratory experiments and numerical models. Meteorit. Planet. Sci., 51(10), 1762–1794. https://doi.org/10.1111/maps.12710 |
Zhu, M. H., Wünnemann, K., and Potter, R. W. K. (2015). Numerical modeling of the ejecta distribution and formation of the Orientale basin on the Moon. J. Geophys. Res.:Planets, 120(12), 2118–2134. https://doi.org/10.1002/2015JE004827 |
Zhu, M. H., Wünnemann, K., and Artemieva, N. (2017). Effects of Moon’s thermal state on the impact basin ejecta distribution. Geophys. Res. Lett., 44(22), 11292–11300. https://doi.org/10.1002/2017GL075405 |
Zhu, M. H., Wünnemann, K., Potter, R. W. K., Kleine, T., and Morbidelli, A. (2019). Are the Moon’s nearside–farside asymmetries the result of a giant impact. J. Geophys. Res.:Planets, 124(8), 2117–2140. https://doi.org/10.1029/2018JE005826 |
[1] |
ChunYu Ding, YuZhen Cai, ZhiYong Xiao, Yan Su, 2020: A rocky hill on the continuous ejecta of Ziwei crater revealed by the Chang’e-3 mission, Earth and Planetary Physics, 4, 105-110. doi: 10.26464/epp2020016 |
[2] |
Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031 |
[3] |
BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033 |
[4] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[5] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
[6] |
ZiQi Ma, Gang Lu, JianFeng Yang, Liang Zhao, 2022: Numerical modeling of metamorphic core complex formation: Implications for the destruction of the North China Craton, Earth and Planetary Physics, 6, 191-203. doi: 10.26464/epp2022016 |
[7] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)