Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, Y. M., Zheng, R. B., Jia, X. Z., Wang, C. B., Wang, S., and Krupar, V. (2022). Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”. Earth Planet. Phys., 6(1), 13–17. http://doi.org/10.26464/epp2022019

2022, 6(1): 13-17. doi: 10.26464/epp2022019

PLANETARY SCIENCES

Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”

1. 

CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

CAS Center for Excellence in Comparative Planetology, Hefei 230026, China

3. 

Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

4. 

Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI 48109-2143, USA

5. 

Universities Space Research Association, Columbia, Maryland, USA

6. 

NASA Goddard Space Flight Center, Greenbelt, Maryland, USA

7. 

Department of Space Physics, Institute of Atmospheric Physics, The Czech Academy of Sciences, Prague, Czech Republic

Corresponding author: YuMing Wang, ymwang@ustc.edu.cn

Received Date: 2022-01-08
Web Publishing Date: 2022-01-13

Locating the source of decametric (DAM) radio emissions is a key step in the use of remote radio observations to understand the Jovian magnetospheric dynamics and their interaction with the planet’s moons. Wang YM et al. (2020) presented a method by which recorded arc-shaped DAM emissions in the radio dynamic spectra can be used to locate the source of a DAM. An Io-related DAM event on March 14, 2014 was used to demonstrate the method. A key parameter in the method is whether the DAM is emitted in the northern or the southern hemisphere; the hemisphere of origin can be determined definitively from the polarization of the emission. Unfortunately, polarization information for the emission on March 14, 2014 event was not recorded. Our analysis assumed the source to be in the northern hemisphere. Lamy et al. (2022) argue convincingly that the source was probably in the southern hemisphere. We appreciate the helpful contribution of Lamy et al. (2022) to this discussion and have updated our analysis, this time assuming that the DAM source was in the southern hemisphere. We also explore the sensitivity of our method to another parameter — the height at which the value of fce,max, which is the maximal electron cyclotron frequency reached along the active magnetic flux tube, is adopted. Finally, we introduce our recent statistical study of 68 DAM events, which lays a more solid basis for testing the reliability of our method, which we continue to suggest is a promising tool by which remote radio observations can be used to locate the emission source of Jovian DAMs.

Key words: radio decametric emissions, Jovian magnetosphere, energetic electrons

Boischot, A., Rosolen, C., Aubier, M. G., Daigne, G., Genova, F., Leblanc, Y., Lecacheux, A., De La Noë, J., and Møller-Pedersen, B. (1980). A new high-grain, broadband, steerable array to study Jovian decametric emission. Icarus, 43(3), 399–407. https://doi.org/10.1016/0019-1035(80)90185-2

Bonfond, B., Grodent, D., Gérard, J. C., Radioti, A., Dols, V., Delamere, P. A., and Clarke, J. T. (2009). The Io UV footprint: location, inter-spot distances and tail vertical extent. J. Geophys. Res. Space Phys., 114(A7), A07224. https://doi.org/10.1029/2009JA014312

Bonfond, B., Saur, J., Grodent, D., Badman, S. V., Bisikalo, D., Shematovich, V., Gérard, J. C., and Radioti, A. (2017). The tails of the satellite auroral footprints at Jupiter. J. Geophys. Res. Space Phys., 122(8), 7985–7996. https://doi.org/10.1002/2017JA024370

Bougeret, J. L., Kaiser, M. L., Kellogg, P. J., Manning, R., Goetz, K., Monson, S. J., Monge, N., Friel, L., Meetre, C. A., … Hoang, S. (1995). WAVES: the radio and plasma wave investigation on the Wind spacecraft. Space Sci. Rev., 71(1-4), 231–263. https://doi.org/10.1007/BF00751331

Bougeret, J. L., Goetz, K., Kaiser, M. L., Bale, S. D., Kellogg, P. J., Maksimovic, M., Monge, N., Monson, S. J., Astier, P. L., … Zouganelis, I. (2008). S/WAVES: the radio and plasma wave investigation on the STEREO mission. Space Sci. Rev., 136(1-4), 487–528. https://doi.org/10.1007/s11214-007-9298-8

Hess, S., Cecconi, B., and Zarka, P. (2008). Modeling of io-jupiter decameter arcs, emission beaming and energy source. Geophys. Res. Lett., 35(13), L13107. https://doi.org/10.1029/2008GL033656

Hess, S. L. G., Pétin, A., Zarka, P., Bonfond, B., and Cecconi, B. (2010). Lead angles and emitting electron energies of Io-controlled decameter radio arcs. Planet. Space Sci., 58(10), 1188–1198. https://doi.org/10.1016/j.pss.2010.04.011

Hinton, P. C., Bagenal, F., and Bonfond, B. (2019). Alfvén wave propagation in the Io plasma torus. Geophys. Res. Lett., 46(3), 1242–1249. https://doi.org/10.1029/2018GL081472

Lamy, L., Zarka, P., Cecconi, B., Klein, L., Masson, S., Denis, L., Coffre, A., and Viou, C. (2017). 1977–2017: 40 years of decametric observations of Jupiter and the Sun with the Nançay Decameter Array. Proceedings of the 8th International Workshop on Planetary, Solar and Heliospheric Radio Emissions held at Seggauberg near Graz, Austria, October 25–27, 2016, 43, 455–466.222

Lamy, L., Cecconi, B., Aicardi, S., and Louis, C. K. (2020). Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al. Earth Planet. Phys., 6(1), 10–12. https://doi.org/10.26464/epp2022018

Lamy, L., Le Gall, A., Cecconi, B., Loh, A., Renaud, P., Denis, L., Coffre, A., Zarka, P. and Lecacheux, A. (2021). Nançay Decameter Array (NDA) Jupiter Routine observation data collection (Version 1.7) [Data set]. PADC.222

Lecacheux, A. 2000. The Nançay Decameter Array: A Useful Step Towards Giant, New Generation Radio Telescopes for Long Wavelength Radio Astronomy. In Radio Astronomy at Long Wavelengths. In R. G. Stone, et al. (Eds.), AGU Geophys. Monogr. Ser., 119, 321.222

Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., Bagenal, F., Bolton, S., Connerney, J., … Zink, J. L. (2017). Generation of the Jovian hectometric radiation: first lessons from Juno. Geophys. Res. Lett., 44(10), 4439–4446. https://doi.org/10.1002/2017GL072923

Louarn, P., Allegrini, F., McComas, D. J., Valek, P. W., Kurth, W. S., André, N., Bagenal, F., Bolton, S., Ebert, R. W., …Wilson, R. J. (2018). Observation of electron conics by Juno: implications for radio generation and acceleration processes. Geophys. Res. Lett., 45(18), 9408–9416. https://doi.org/10.1029/2018GL078973

Louis, C. K. , Lamy, L. , Zarka, P. , Cecconi, B. , Hess, S. L. G. , and Bonnin, X. (2017). Simulating Jupiter-satellite decametric emissions with ExPRES: a parametric study. In Proceedings of the 8th International Workshop on Planetary Radio Emissions VIII (pp. 59-72). Vienna: Austrian Academy of Sciences Press.222

Louis, C. K., Louarn, P., Allegrini, F., Kurth, W. S., and Szalay, J. R. (2020). Ganymede-induced decametric radio emission: in situ observations and measurements by Juno. Geophys. Res. Lett., 47(20), e2020GL090021. https://doi.org/10.1029/2020GL090021

Marques, M. S., Zarka, P., Echer, E., Ryabov, V. B., Alves, M. V., Denis, L., and Coffre, A. (2017). Statistical analysis of 26 yr of observations of decametric radio emissions from Jupiter. Astron. Astrophys., 604(A17), 18.

Ray, L. C., and Hess, S. (2008). Modelling the Io-related DAM emission by modifying the beaming angle. J. Geophys. Res. Space Phys., 113(A11), A11218. https://doi.org/10.1029/2008JA013669

Wang, Y. M., Jia, X. Z., Wang, C. B., Wang, S., and Krupar, V. (2020). Locating the source field lines of Jovian decametric radio emissions. Earth Planet. Phys., 4(2), 95–104. https://doi.org/10.26464/epp2020015

Zheng, R. B. , Wang, Y. M. , Li, X. L. , Wang, C. B. and Jia, X. Z. (2022). Statistical study on the sources of Jovian decametric radio emissions based on the radio observations of remote instruments. arXiv: 2201.03148.222

[1]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[2]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[3]

Laurent Lamy, Baptiste Cecconi, Stéphane Aicardi, C. K. Louis, 2022: Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al., Earth and Planetary Physics, 6, 10-12. doi: 10.26464/epp2022018

[4]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[5]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[6]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[7]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

[8]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[9]

YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052

[10]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[11]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[12]

YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021

[13]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

[14]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[15]

Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047

[16]

Xiao-Dong Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, Y. Futaana, 2022: Neutralized solar energetic particles for SEP forecasting: Feasibility study of an innovative technique for space weather applications, Earth and Planetary Physics, 6, 42-51. doi: 10.26464/epp2022003

[17]

Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048

[18]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[19]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[20]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”

YuMing Wang, RuoBing Zheng, XianZhe Jia, ChuanBing Wang, Shui Wang, V. Krupar