Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Ajith, K. K., Ram, S. T., Li, G. Z., Yamamoto, M., Hozumi, K., Yatimi, C. Y., and Supnithi, P. (2021). On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods. Earth Planet. Phys., 5(5), 378–386. http://doi.org/10.26464/epp2021039

2021, 5(5): 378-386. doi: 10.26464/epp2021039

SPACE PHYSICS: IONOSPHERIC PHYSICS

On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

Indian Institute of Geomagnetism, Mumbai, India

3. 

Beijing National Observatory of Space Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

4. 

College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

5. 

Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan

6. 

National Institute of Information and Communications Technology, Tokyo, Japan

7. 

Space Science Center, Indonesian National Institute of Aeronautics and Space, Indonesia

8. 

School of Engineering, King Mongkut’s Institute of Technology Ladkrabang, Chalongkrung Rd, Ladkrabang, 10520 Bangkok, Thailand

Corresponding author: K. K. Ajith, ajithkk2007@gmail.com

Received Date: 2021-03-30
Web Publishing Date: 2021-07-14

The occurrence of midnight Equatorial Plasma Bubbles (EPBs) during the June solstice period of the ascending phase of solar cycle 24, from 2010 to 2014, was studied using data from the 47 MHz Equatorial Atmosphere Radar (EAR) at Kototabang, Indonesia. The analysis shows that the occurrence of midnight hour EPBs was at its maximum during the low solar activity year 2010 and monotonically decreased thereafter with increasing solar activity. Details of the dependence of midnight hour EPB occurrence on solar activity were investigated using SAMI2 model simulation with a realistic input of E × B drift velocity data obtained from the CINDI-IVM onboard the C/NOFS satellite. Results obtained from term-by-term analysis of the flux tube integrated linear growth rate of RT instability indicate that the formation of a high flux tube electron content height gradient (steep vertical gradient) region at higher altitudes, due to the elevated F layer, is the key factor enhancing the growth rate of RT instability during low solar activity June solstices. Other factors are discussed in light of the relatively weak westward zonal electric field in the presence of the equatorward neutral wind and north-to-south transequatorial wind around the midnight hours of low solar activity June solstices. Also discussed are the initial seeding of RT instability by MSTIDs and how the threshold height required for EPB development varies with solar activity.

Key words: equatorial plasma bubbles, equatorial ionosphere, ionospheric instabilities and irregularities

Aarons, J., Mullen, J. P., Whitney, H. E., and Mackenzie, E. M. (1980). The dynamics of equatorial irregularity patch formation, motion, and decay. J. Geophys. Res., 85(A1), 139–149. https://doi.org/10.1029/JA085iA01p00139

Ajith, K. K., Tulasi Ram, S., Yamamoto, M., Yokoyama, T., Gowtam, V. S., Otsuka, Y., Tsugawa, T., and Niranjan, K. (2015). Explicit characteristics of evolutionary-type plasma bubbles observed from Equatorial Atmosphere Radar during the low to moderate solar activity years 2010-2012. J. Geophys. Res., 120(2), 1371–1382. https://doi.org/10.1002/2014JA020878

Ajith, K. K., Tulasi Ram, S., Yamamoto, M., Otsuka, Y., and Niranjan, K. (2016). On the fresh development of equatorial plasma bubbles around the midnight hours of June solstice. J. Geophys. Res., 121(9), 9051–9062. https://doi.org/10.1002/2016JA023024

Chakrabarty, D., Fejer, B. G., Gurubaran, S., Pant, T. K., Abdu, M. A., and Sekar, R. (2014). On the pre-midnight ascent of F-layer in the June solstice during the deep solar minimum in 2008 over the Indian sector. J. Atmos. Terr. Phys., 121, 177–187. https://doi.org/10.1016/j.jastp.2014.01.002

Dao, T., Otsuka, Y., Shiokawa, K., Tulasi Ram, S., and Yamamoto, M. (2016). Altitude development of postmidnight F region field-aligned irregularities observed using Equatorial Atmosphere Radar in Indonesia. Geophys. Res. Lett., 43(3), 1015–1022. https://doi.org/10.1002/2015GL067432

Dao, T., Otsuka, Y., Shiokawa, K., Nishioka, M., Yamamoto, M., Buhari, S. M., Abdullah, M., and Husin, A. (2017). Coordinated observations of postmidnight irregularities and thermospheric neutral winds and temperatures at low latitudes. J. Geophys. Res., 122(7), 7504–7518. https://doi.org/10.1002/2017JA024048

de La Beaujardière, O., and The C/NOFS Science Definition Team. (2004). C/NOFS: a mission to forecast scintillations. J. Atmos. Sol. Terr. Phys., 66(17), 1573–1591. https://doi.org/10.1016/j.jastp.2004.07.030

Ding, F., Wan, W. X., Xu, G. R., Yu, T., Yang, G. L., and Wang, J. S. (2011). Climatology of medium-scale traveling ionospheric disturbances observed by a GPS network in central China. J. Geophys. Res., 116(A9), A09327. https://doi.org/10.1029/2011JA016545

Fang, T. W., Akmaev, R. A., Stoneback, R. A., Fuller-Rowell, T., Wang, H., and Wu, F. (2016). Impact of midnight thermosphere dynamics on the equatorial ionospheric vertical drifts. J. Geophys. Res., 121(5), 4858–4868. https://doi.org/10.1002/2015JA022282

Fejer, B. G., Farley, D. T., Woodman, R. F., and Calderon, C. (1979). Dependence of Equatorial F region vertical drifts on season and solar cycle. J. Geophys. Res., 84(A10), 5792–5796. https://doi.org/10.1029/JA084iA10p05792

Fesen, C. G. (1996). Simulations of the low-latitude midnight temperature maximum. J. Geophys. Res., 101(A12), 26863–26874. https://doi.org/10.1029/96JA01823

Fukao, S., Hashiguchi, H., Yamamoto, M., Tsuda, T., Nakamura, T., Yamamoto, M. K., Sato, T., Hagio, M., and Yabugaki, Y. (2003). Equatorial Atmosphere Radar (EAR): system description and first results. Radio Sci., 38(3), 1053. https://doi.org/10.1029/2002RS002767

Haerendel, G. (1973). Theory of equatorial spread F, preprint, Max-Planck-Institut fur Physik and Astrophysik, Institut fur Extraterrestrisches Physik, Garching, West Germany.222

Heelis, R. A., Stoneback, R., Earle, G. D., Haaser, R. A., and Abdu, M. A. (2010). Medium-scale equatorial plasma irregularities observed by Coupled Ion-Neutral Dynamics Investigation sensors aboard the Communication Navigation Outage Forecast System in a prolonged solar minimum. J. Geophys. Res., 115(A10), A10321. https://doi.org/10.1029/2010JA015596

Huba, J. D., Joyce, G., and Fedder, J. A. (2000). Sami2 is AnotherModel of the Ionosphere (SAMI2): a new low-latitude ionosphere model. J. Geophys. Res., 105(A10), 23035–23053. https://doi.org/10.1029/2000JA000035

Huba, J. D., and Krall, J. (2013). Impact of meridional winds on equatorial spread F: revisited. Geophys. Res. Lett., 40(7), 1268–1272. https://doi.org/10.1002/grl.50292

Jayachandran, B., Balan, N., Rao, P. B., Sastri, J. H., and Bailey, G. J. (1993). HF Doppler and ionosonde observations on the onset conditions of equatorial spread F. J. Geophys. Res., 98(A8), 13741–13750. https://doi.org/10.1029/93JA00302

Jyoti, N., Devasia, C. V., Sridharan, R., and Tiwari, D. (2004). Threshold height (h’F)c for the meridional wind to play a deterministic role in the bottom side equatorial spread F and its dependence on solar activity. Geophys. Res. Lett., 31(12), L12809. https://doi.org/10.1029/2004GL019455

Krishna Moorthy, K., Raghava Reddi, C., and Krishna Murthy, B. V. (1979). Night time ionospheric scintillations at the magnetic equator. J. Atmos. Terr. Phys., 41(2), 123–134. https://doi.org/10.1016/0021-9169(79)90004-7

Li, G. Z., Ning, B. Q., Abdu, M. A., Yue, X. A., Liu, L. B., Wan, W. X., and Hu, L. H. (2011). On the occurrence of postmidnight equatorial F region irregularities during the June solstice. J. Geophys. Res., 116(A4), A04318. https://doi.org/10.1029/2010JA016056

Makela, J. J., Miller, E. S., and Talaat, E. R. (2010). Nighttime medium-scale traveling ionospheric disturbances at low geomagnetic latitudes. Geophys. Res. Lett., 37(24), L24104. https://doi.org/10.1029/2010GL045922

Maruyama, T., Kawamura, M., Saito, S., Nozaki, K., Kato, H., Hemmakorn, N., Boonchuk, T., Komolmis, T., and Ha Duyen C. (2007). Low latitude ionosphere-thermosphere dynamics studies with inosonde chain in Southeast Asia. Ann. Geophys., 25(7), 1569–1577. https://doi.org/10.5194/angeo-25-1569-2007

Maruyama, T., Saito, S., Kawamura, M., and Nozaki, K. (2008). Thermospheric meridional winds as deduced from ionosonde chain at low and equatorial latitudes and their connection with midnight temperature maximum. J. Geophys. Res., 113(A9), A09316. https://doi.org/10.1029/2008JA013031

Miller, E. S., Makela, J. J., and Kelley, M. C. (2009). Seeding of equatorial plasma depletions by polarization electric fields from middle latitudes: experimental evidence. Geophys. Res. Lett., 36(18), L18105. https://doi.org/10.1029/2009GL039695

Narayanan, V. L., Shiokawa, K., Otsuka, Y., and Saito, S. (2014). Airglow observations of nighttime medium-scale traveling ionospheric disturbances from Yonaguni: Statistical characteristics and low-latitude limit. J. Geophys. Res., 119(11), 9268–9282. https://doi.org/10.1002/2014JA020368

Nicolls, M. J., Kelley, M. C., Vlasov, M. N., Sahai, Y., Chau, J. L., Hysell, D. L., Fagundes, P. R., Becker-Guedes, F., and Lima, W. L. C. (2006). Observations and modeling of post-midnight uplifts near the magnetic equator. Ann. Geophys., 24(5), 1317–1331. https://doi.org/10.5194/angeo-24-1317-2006

Niranjan, K., Brahmanandam, P. S., Ramakrishna Rao, P., Uma, G., Prasad, D. S. V. V. D., and Rama Rao, P. V. S. (2003). Post-midnight spread-F occurrence over Waltair (17.7° N, 83.3° E) during low and ascending phases of solar activity. Ann. Geophys., 21(3), 745–750. https://doi.org/10.5194/ANGEO-21-745-2003

Nishioka, M., Otsuka, Y., Shiokawa, K., Tsugawa, T., Effendy, Supnithi, P., Nagatsuma, T., and Murata, K. T. (2012). On post-midnight field-aligned irregularities observed with a 30.8-MHz radar at a low latitude: comparison with F-layer altitude near the geomagnetic equator. J. Geophys. Res., 117(A8), A08337. https://doi.org/10.1029/2012JA017692

Otsuka, Y., Ogawa, T., and Effendy. (2009). VHF radar observations of night time F-region field-aligned irregularities over Kototabang, Indonesia. Earth, Planets Space, 61(4), 431–437. https://doi.org/10.1186/BF03353159

Otsuka, Y., Kotake, N., Shiokawa, K., Ogawa, T., Tsugawa, T., and Saito, A. (2011). Statistical study of medium-scale traveling ionospheric disturbances observed with a GPS receiver network in Japan. In M. A. Abdu, et al. (Eds.), Aeronomy of the Earth’s Atmosphere and Ionosphere (pp. 291-299). Dordrecht, Netherlands: Springer.222

Patra, A. K., Phanikumar, D. V., and Pant, T. K. (2009). Gadanki radar observations of F region field-aligned irregularities during June solstice of solar minimum: first results and preliminary analysis. J. Geophys. Res., 114(A12), A12305. https://doi.org/10.1029/2009JA014437

Shiokawa, K., Otsuka, Y., Ejiri, M. K., Sahai, Y., Kadota, T., Ihara, C., Ogawa, T., Igarashi, K., Miyazaki, S., and Saito, A. (2002). Imaging observations of the equatorward limit of midlatitude traveling ionospheric disturbances. Earth, Planets Space, 54(1), 57–62. https://doi.org/10.1186/BF03352421

Sridharan, S., and Meenakshi, S. (2020). Semidiurnal tidal influence on the occurrence of postmidnight F region FAI radar echoes. J. Geophys. Res., 125(8), e2019JA027700. https://doi.org/10.1029/2019JA027700

Stoneback, R. A., Heelis, R. A., Burrell, A. G., Coley, W. R., Fejer, B. G., and Pacheco, E. (2011). Observations of quiet time vertical ion drift in the equatorial ionosphere during the solar minimum period of 2009. J. Geophys. Res., 116(A12), A12327. https://doi.org/10.1029/2011JA016712

Subbarao, K. S. V., and Krishna Murthy, B. V. (1994). Post-sunset F-region vertical velocity variations at magnetic equator. J. Atoms. Terr. Phys., 56(1), 59–65. https://doi.org/10.1016/0021-9169(94)90176-7

Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh-Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res., 101(A12), 26875–26891. https://doi.org/10.1029/96JA00682

Taori, A., Parihar, N., Ghodpage, R., Dashora, N., Sripathi, S., Kherani, E. A., and Patil, P. T. (2015). Probing the possible trigger mechanisms of an equatorial plasma bubble event based on multistation optical data. J. Geophys. Res., 120(10), 8835–8847. https://doi.org/10.1002/2015JA021541

Tulasi Ram, S., Rama Rao, P. V. S., Niranjan, K., Prasad, D. S. V. V. D., Sridharan, R., Devasia, C. V., and Ravindran, S. (2006). The role of post-sunset vertical drifts at the equator in predicting the onset of VHF scintillations during high and low sunspot activity years. Ann. Geophys., 24(6), 1609–1616. https://doi.org/10.5194/angeo-24-1609-2006

Tulasi Ram, S., Rama Rao, P. V. S., Prasad, D. S. V. V. D., Niranjan, K., Raja Babu, A., Sridharan, R., Devasia, C. V., and Ravindran, S. (2007). The combined effects of electrojet strength and the geomagnetic activity (K p-index) on the post sunset height rise of the F-layer and its role in the generation of ESF during high and low solar activity periods. Ann. Geophys., 25(9), 2007–2017. https://doi.org/10.5194/angeo-25-2007-2007,2007

Tulasi Ram, S., Ajith, K. K., Yokoyama, T., Yamamoto, M., and Niranjan, K. (2017). Vertical rise velocity of equatorial plasma bubbles estimated from Equatorial Atmosphere Radar (EAR) observations and HIRB model simulations. J. Geophys. Res., 122(6), 6584–6594. https://doi.org/10.1002/2017JA024260

Yizengaw, E., Retterer, J., Pacheco, E. E., Roddy, P., Groves, K., Caton, R., and Baki, P. (2013). Postmidnight bubbles and scintillations in the quiet-time June solstice. Geophys. Res. Lett., 40(21), 5592–5597. https://doi.org/10.1002/2013GL058307

Yokoyama, T., Fukao, S., and Yamamoto, M. (2004). Relationship of the onset of equatorial F region irregularities with the sunset terminator observed with the Equatorial Atmosphere Radar. Geophys. Res. Lett., 31(24), L24804. https://doi.org/10.1029/2004GL021529

Yokoyama, T., Yamamoto, M., Otsuka, Y., Nishioka, M., Tsugawa, T., Watanabe, S., and Pfaff, R. F. (2011). On postmidnight low-latitude ionospheric irregularities during solar minimum: 1. Equatorial Atmosphere Radar and GPS-TEC observations in Indonesia. J. Geophys. Res., 116(A11), A11325. https://doi.org/10.1029/2011JA016797

Zhan, W. J., and Rodrigues, F. S. (2018). June solstice equatorial spread F in the American sector: a numerical assessment of linear stability aided by incoherent scatter radar measurements. J. Geophys. Res., 123(1), 755–767. https://doi.org/10.1002/2017JA024969

Zhan, W. J., Rodrigues, F. S., and Milla, M. A. (2018). On the genesis of postmidnight equatorial spread F: results for the American/Peruvian sector. Geophys. Res. Lett., 45(15), 7354–7361. https://doi.org/10.1029/2018GL078822

[1]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[2]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[3]

Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042

[4]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[5]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[6]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[7]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[8]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[9]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

[10]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[11]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[12]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[13]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[14]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[15]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[16]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[17]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[18]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[19]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[20]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi