Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhang, D. Y., Pan, W. Y., Yang, D. H., Qiu, L. Y., Dong, X. P. and Meng, W. J. (2021). Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method. Earth Planet. Phys., 5(2), 149–157doi: 10.26464/epp2021022

2021, 5(2): 149-157. doi: 10.26464/epp2021022

SOLID EARTH: COMPUTATIONAL GEOPHYSICS

Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method

1. 

Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China

2. 

Key Laboratory of Petroleum Resource Research, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

3. 

Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China

Corresponding author: DingHui Yang, ydh@tsinghua.edu.cn

Received Date: 2020-09-30
Web Publishing Date: 2021-03-01

The nearly analytic discrete (NAD) method is a kind of finite difference method with advantages of high accuracy and stability. Previous studies have investigated the NAD method for simulating wave propagation in the time-domain. This study applies the NAD method to solving three-dimensional (3D) acoustic wave equations in the frequency-domain. This forward modeling approach is then used as the “engine” for implementing 3D frequency-domain full waveform inversion (FWI). In the numerical modeling experiments, synthetic examples are first given to show the superiority of the NAD method in forward modeling compared with traditional finite difference methods. Synthetic 3D frequency-domain FWI experiments are then carried out to examine the effectiveness of the proposed methods. The inversion results show that the NAD method is more suitable than traditional methods, in terms of computational cost and stability, for 3D frequency-domain FWI, and represents an effective approach for inversion of subsurface model structures.

Key words: three-dimension, frequency-domain, NAD method, forward modeling, full waveform inversion

Bozdağ, E., Peter, D., Lefebvre, M., Komatitsch, D., Tromp, J., Hill, J., Podhorszki, N., and Pugmire, D. (2016). Global adjoint tomography: first-generation model. Geophys. J. Int., 207(3), 1739–1766. https://doi.org/10.1093/gji/ggw356

Brossier, R., Operto, S., and Virieux, J. (2009). Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics, 74(6), WCC105–WCC118. https://doi.org/10.1190/1.3215771

Day, S. M. (1982). Three-dimensional simulation of spontaneous rupture: the effect of nonuniform prestress. Bull. Seismol. Soc. Am., 72(6A), 1881–1902.

Dong, X. P., Yang, D. H., and Niu, F. L. (2019). Passive Adjoint tomography of the crustal and upper mantle beneath eastern Tibet with a W2-norm misfit function. Geophys. Res. Lett., 46(22), 12986–12995. https://doi.org/10.1029/2019GL085515

He, X. J., Yang, D. H., Huang, X. Y., and Ma, X. (2020). A numerical dispersion-dissipation analysis of discontinuous Galerkin methods based on quadrilateral and triangular elements. Geophysics, 85(3), T101–T121. https://doi.org/10.1190/geo2019-0109.1

Igel, H., Mora, P., and Riollet, B. (1995). Anisotropic wave propagation through finite-difference grids. Geophysics, 60(4), 1203–1216. https://doi.org/10.1190/1.1443849

Kelly, K. R., Ward, R. W., Treitel, S., and Alford, R. M. (1976). Synthetic seismograms: a finite-difference approach. Geophysics, 41(1), 2–27. https://doi.org/10.1190/1.1440605

Komatitsch, D., and Tromp, J. (2003). A perfectly matched layer absorbing boundary condition for the second-order seismic wave equation. Geophys. J. Int., 154(1), 146–153. https://doi.org/10.1046/j.1365-246X.2003.01950.x

Komatitsch, D., Tsuboi, S., and Tromp, J. (2005). The spectral-element method in seismology. In A. Levander, et al. (Eds.), Seismic Earth: Array Analysis of Broadband Seismograms, Volume 157 (pp. 205-227). Washington, DC: American Geophysical Union. https://doi.org/10.1029/157GM13222

Kosloff, D. D., and Baysal, E. (1982). Forward modeling by a Fourier method. Geophysics, 47(10), 1402–1412. https://doi.org/10.1190/1.1441288

Lailly, P. (1983). The seismic inverse problem as a sequence of before stack migration. In SIAM Conference on Inverse Scattering: Theory and Applications, Expanded Abstracts (pp. 206-220). SIAM.222

Lang, C., and Yang, D. H. (2017). A nearly analytic discrete method for solving the acoustic-wave equations in the frequency domain. Geophysics, 82(1), T43–T57. https://doi.org/10.1190/geo2016-0248.1

Li, J. S., Yang, D. H., and Liu, F. Q. (2013). An efficient reverse time migration method using local nearly analytic discrete operator. Geophysics, 78(1), S15–S23. https://doi.org/10.1190/geo2012-0247.1

Liu, Q. Y., and Tromp, J. (2006). Finite-frequency kernels based on adjoint methods. Bull. Seismol. Soc. Am., 96(6), 2383–2397. https://doi.org/10.1785/0120060041

Liu, S. L., Li, X. F., Wang, W. S., Liu, Y. S., Zhang, M. G., and Zhang, H. (2014). A new kind of optimal second-order symplectic scheme for seismic wave simulations. Sci China Earth Sci, 57(4), 751–758. https://doi.org/10.1007/s11430-013-4805-0

Liu, S. L., Li, X. F., Wang, W. S., Xu, L., and Li, B. F. (2015). A modified symplectic scheme for seismic wave modeling. J. Appl. Geophys., 116, 110–120. https://doi.org/10.1016/j.jappgeo.2015.03.007

Lysmer, J., and Drake, L. A. (1972). A finite element method for seismology. Methods Comput. Phys.: Adv. Res. Appl., 11, 181–216. https://doi.org/10.1016/B978-0-12-460811-5.50009-X

Ma, X., Yang, D. H., He, X. J., Li, J. S., and Zheng, Y. C. (2018). A new high-order scheme based on numerical dispersion analysis of the wave phase velocity for semidiscrete wave equations. Geophysics, 83(3), T123–T138. https://doi.org/10.1190/geo2017-0441.1

Marfurt, K. J. (1984). Accuracy of finite-difference and finite-element modeling of the scalar and elastic wave equations. Geophysics, 49(5), 533–549. https://doi.org/10.1190/1.1441689

Mora, P. (1987). Nonlinear two-dimensional elastic inversion of multioffset seismic data. Geophysics, 52(9), 1211–1228. https://doi.org/10.1190/1.1442384

Nocedal, J., and Wright, S. J. (2006). Numerical Optimization (2nd ed). Berlin: Springer.222

Operto, S., Ravaut, C., Improta, L., Virieux, J., Herrero, A., and Dell’Aversana, P. (2004). Quantitative imaging of complex structures from dense wide-aperture seismic data by multiscale traveltime and waveform inversions: a case study. Geophys. Prosp., 52(6), 625–651. https://doi.org/10.1111/j.1365-2478.2004.00452.x

Operto, S., Virieux, J., Amestoy, P., L’Excellent, J. Y., Giraud., L., and Ben Hadj Ali, H. (2007). 3-D finite-difference frequency-domain modeling of visco-acoustic wave propagation using a massively parallel direct solver: a feasibility study. Geophysics, 72(5), SM195–SM211. https://doi.org/10.1190/1.2759835

Pan, W. Y., Innanen, K. A., Margrave, G. F., Fehler, M. C., Fang, X. D., and Li, J. X. (2016). Estimation of elastic constants for HTI media using Gauss-Newton and full-Newton multiparameter full-waveform inversion. Geophysics, 81(5), R275–R291. https://doi.org/10.1190/geo2015-0594.1

Pan, W. Y., Innanen, K. A., and Liao, W. Y. (2017). Accelerating Hessian-free Gauss-Newton full-waveform inversion via l-BFGS preconditioned conjugate-gradient algorithm. Geophysics, 82(2), R49–R64. https://doi.org/10.1190/geo2015-0595.1

Plessix, R. E. (2009). Three-dimensional frequency-domain full-waveform inversion with an iterative solver. Geophysics, 74(6), WCC149–WCC157. https://doi.org/10.1190/1.3211198

Pratt, R. G., and Worthington, M. H. (1990). Inverse theory applied to multi-source cross-hole tomography. Part 1: acoustic wave-equation method. Geophys. Prosp., 38(3), 287–310. https://doi.org/10.1111/j.1365-2478.1990.tb01846.x

Pratt, R. G., Shin, C., and Hick, G. J. (1998). Gauss–Newton and full Newton methods in frequency–space seismic waveform inversion. Geophys. J. Int., 133(2), 341–362. https://doi.org/10.1046/j.1365-246X.1998.00498.x

Pratt, R. G. (1999). Seismic waveform inversion in the frequency domain, Part 1: theory and verification in a physical scale model. Geophysics, 64(3), 888–901. https://doi.org/10.1190/1.1444597

Seriani, G., and Priolo, E. (1994). Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des., 16(3-4), 337–348. https://doi.org/10.1016/0168-874X(94)90076-0

Sirgue, L., and Pratt, R. G. (2004). Efficient waveform inversion and imaging: a strategy for selecting temporal frequencies. Geophysics, 69(1), 231–248. https://doi.org/10.1190/1.1649391

Song, Z. M., and Williamson, P. R. (1995). Frequency-domain acoustic-wave modeling and inversion of crosshole data: part I-2.5-D modeling method. Geophysics, 60(3), 784–795. https://doi.org/10.1190/1.1443817

Tape, C., Liu, Q. Y., and Tromp, J. (2007). Finite-frequency tomography using adjoint methods-methodology and examples using membrane surface waves. Geophys. J. Int., 168(3), 1105–1129. https://doi.org/10.1111/j.1365-246X.2006.03191.x

Tarantola, A. (1986). A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics, 51(10), 1893–1903. https://doi.org/10.1190/1.1442046

Tong, P., Yang, D. H., and Hua, B. L. (2011). High accuracy wave simulation–revised derivation, numerical analysis and testing of a nearly analytic integration discrete method for solving acoustic wave equation. International Journal of Solids and Structures, 48(1), 56–70. https://doi.org/10.1016/j.ijsolstr.2010.09.003

Tong, P., Yang, D. H., Hua, B. L., and Wang, M. X. (2013). A high-order stereo-modeling method for solving wave equations. Bull. Seismol. Soc. Am., 103(2A), 811–833. https://doi.org/10.1785/0120120144

Tromp, J., Tape, C., and Liu, Q. (2005). Seismic tomography, adjoint methods, time reversal, and banana-doughnut kernels. Geophys. J. Int., 160(1), 195–216. https://doi.org/10.1111/j.1365-246X.2004.02453.x

Virieux, J., and Operto, S. (2009). An overview of full-waveform inversion in exploration geophysics. Geophysics., 74(6), WCC1–WCC26. https://doi.org/10.1190/1.3238367

Wang, J., Yang, D. H., Jing H., and Wu, H. (2019). Full waveform inversion based on the ensemble Kalman filter method using uniform sampling without replacement. Sci. Bull., 64(5), 321–330. https://doi.org/10.1016/j.scib.2019.01.021

Yang, D. H., Teng, J. W., Zhang, Z. J., and Liu, E. R. (2003). A nearly analytic discrete method for acoustic and elastic wave equations in anisotropic media. Bull. Seismol. Soc. Am., 93(2), 882–890. https://doi.org/10.1785/0120020125

Yang, D. H., Lu, M., Wu, R. S., and Peng, J. M. (2004). An optimal nearly analytic discrete method for 2D acoustic and elastic wave equations. Bull. Seismol. Soc. Am., 94(5), 1982–1992. https://doi.org/10.1785/012003155

Yang, D. H., Peng, J. M., Lu, M., and Terlaky, T. (2006). Optimal nearly analytic discrete approximation to the scalar wave equation. Bull. Seismol. Soc. Am., 96(3), 1114–1130. https://doi.org/10.1785/0120050080

Yang, D. H., Wang, L., and Deng, X. Y. (2010). An explicit split-step algorithm of the implicit Adams method for solving 2-D acoustic and elastic wave equations. Geophys. J. Int., 180(1), 291–310. https://doi.org/10.1111/j.1365-246X.2009.04407.x

Yang, D. H., Wang, N., and Liu, E. (2012). A strong stability-preserving predictor-corrector method for the simulation of elastic wave propagation in anisotropic media. Commun. Comput. Phys., 12(4), 1006–1032. https://doi.org/10.4208/cicp.010111.230911a

[1]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[2]

Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046

[3]

Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020

[4]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[5]

JinHai Zhang, ZhenXing Yao, 2017: Exact local refinement using Fourier interpolation for nonuniform-grid modeling, Earth and Planetary Physics, 1, 58-62. doi: 10.26464/epp2017008

[6]

TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026

[7]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[8]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[9]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061

[10]

DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014

[11]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[12]

Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022

[13]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[14]

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018

[15]

Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005

[16]

Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034

[17]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

[18]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[19]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[20]

XiaoZhong Tong, JianXin Liu, AiYong Li, 2018: Two-dimensional regularized inversion of AMT data based on rotation invariant of Central impedance tensor, Earth and Planetary Physics, 2, 430-437. doi: 10.26464/epp2018040

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method

DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng