Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Gu, H., Cui, J., Niu, D. D., Dai, L. K., Huang, J. P., Wu, X. S., Hao, Y. Q., and Wei, Y. (2020). Observation of CO2++ dication in the dayside Martian upper atmosphere. Earth Planet. Phys., 4(4), 396–402doi: 10.26464/epp2020036

2020, 4(4): 396-402. doi: 10.26464/epp2020036

PLANETARY SCIENCES

Observation of CO2++ dication in the dayside Martian upper atmosphere

1. 

State Key Laboratory of Lunar and Planetary Sciences, Macau University of Science and Technology, Macau 999078, China

2. 

School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

3. 

Key Laboratory of Lunar and Deep Space Exploration, Chinese Academy of Sciences, Beijing 100101, China

4. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China

5. 

School of Earth and Space Sciences, Beijing University, Beijing 100871, China

6. 

Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

7. 

School of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2020-03-28
Web Publishing Date: 2020-07-31

Doubly charged positive ions (dications) are an important component of planetary ionospheres because of the large energy required for their formation. Observations of these ions are exceptionally difficult due to their low abundances; until now, only atomic dications have been detected. The Neutral Gas and Ion Mass Spectrometer (NGIMS) measurements made on board the recent Mars Atmosphere and Volatile Evolution mission provide the first opportunity for decisive detection of molecular dications, CO2++ in this case, in a planetary upper atmosphere. The NGIMS data reveal a dayside averaged CO2++ distribution declining steadily from 5.6 cm−3 at 160 km to below 1 cm−3 above 200 km. The dominant CO2++ production mechanisms are double photoionization of CO2 below 190 km and single photoionization of CO2+ at higher altitudes; CO2++ destruction is dominated by natural dissociation, but reactions with atmospheric CO2 and O become important below 160 km. Simplified photochemical model calculations are carried out and reasonably reproduce the data at low altitudes within a factor of 2 but underestimate the data at high altitudes by a factor of 4. Finally, we report a much stronger solar control of the CO2++ density than of the CO2+ density .

Key words: MAVEN, Martian ionosphere, dication

Andersson, L., Ergun, R. E., Delory, G. T., Eriksson, A., Westfall, J., Reed, H., McCauly, J., Summers, D., and Meyers, D. (2015). The Langmuir Probe and Waves (LPW) instrument for MAVEN. Space Sci. Rev., 195(1–4), 173–198. https://doi.org/10.1007/s11214-015-0194-3

Benna, M., Mahaffy, P. R., Grebowsky, J. M., Fox, J. L., Yelle, R. V., and Jakosky, B. M. (2015). First measurements of composition and dynamics of the Martian ionosphere by MAVEN’s Neutral Gas and Ion Mass Spectrometer. Geophys. Res. Lett., 42(21), 8958–8965. https://doi.org/10.1002/2015GL066146

Bizau, J. M., Cubaynes, D., Shorman, M. M. A., Guilbaud, S., Blancard, C., Lemaire, J., Thissen, R., Giuliani, A., Nicolas, C., and Milosavljević, A. R. (2012). Photoionization of atomic and molecular positively charged ions. J. Phys. Conf. Ser., 399, 012002. https://doi.org/10.1088/1742-6596/399/1/012002

Breig, E. L., Torr, M. R., Torr, D. G., Hanson, W. B., Hoffman, J. H., Walker, J. G. G., and Nier, A. O. (1977). Doubly charged atomic oxygen ions in the thermosphere, 1. Photochemistry. J. Geophys. Res., 82(7), 1008–1012. https://doi.org/10.1029/JA082i007p01008

Breig, E. L., Torr, M. R., and Kayser, D. C. (1982). Observations and photochemistry of O++ in the daytime thermosphere. J. Geophys. Res. Space Phys., 87(A9), 7653–7665. https://doi.org/10.1029/JA087iA09p07653

Cui, J., Galand, M., Zhang, S. J., Vigren, E., and Zou, H. (2015). The electron thermal structure in the dayside Martian ionosphere implied by the MGS radio occultation data. J. Geophys. Res. Planets, 120(2), 278–286. https://doi.org/10.1002/2014JE004726

Cui, J., Yelle, R. V., Zhao, L. L., Stone, S., Jiang, F. Y., Cao, Y. T., Yao, M. J., Koskinen, T. T., and Wei, Y. (2018). Astrophys. J. Lett., 853(2), L33. https://doi.org/10.3847/2041-8213/aaa89a

Eparvier, F. G., Chamberlin, P. C., Woods, T. N., and Thiemann, E. M. B. (2015). The solar extreme ultraviolet monitor for MAVEN. Space Sci. Rev., 195(1–4), 293–301. https://doi.org/10.1007/s11214-015-0195-2

Ergun, R. E., Morooka, M. W., Andersson, L. A., Fowler, C. M., Delory, G. T., Andrews, D. J., Eriksson, A. I., McEnulty, T., and Jakosky, B. M. (2015). Dayside electron temperature and density profiles at Mars: First results from the MAVEN Langmuir probe and waves instrument. Geophys. Res. Lett., 42(21), 8846–8853. https://doi.org/10.1002/2015GL065280

Fox, J. L., and Victor, G. A. (1981). O++ in the Venusian ionosphere. J. Geophys. Res. Space Phys., 86(A4), 2438–2442. https://doi.org/10.1029/JA086iA04p02438

Fox, J. L. (2009). Morphology of the dayside ionosphere of Mars: Implications for ion outflows. J. Geophys. Res. Planets, 114(E12), E12005. https://doi.org/10.1029/2009JE003432

Franceschi, P., Thissen, R., Žabka, J., Roithová, J., Herman, Z., and Dutuit, O. (2003). Internal energy effects in the reactivity of CO22+ doubly charged molecular ions with CO2 and CO. Int. J. Mass Spectrom., 228(2–3), 507–516. https://doi.org/10.1016/S1387-3806(03)00157-X

Frank, L. A., Paterson, W. R., Ackerson, K. L., Vasyliunas, V. M., Coroniti, F. V., and Bolton, S. J. (1996). Plasma observations at Io with the Galileo spacecraft. Science, 274(5286), 394–395. https://doi.org/10.1126/science.274.5286.394

Frank, L. A., and Paterson, W. R. (2001). Survey of thermal ions in the Io plasma torus with the Galileo spacecraft. J. Geophys. Res. Space Phys., 106(A4), 6131–6149. https://doi.org/10.1029/2000JA000159

Ghosh, S., Mahajan, K. K., Grebowsky, J. M., and Nath, N. (1995). Morphology of O++ ions and their maintenance in the nightside Venus ionosphere. J. Geophys. Res. Space Phys., 100(A12), 23983–23991. https://doi.org/10.1029/95JA01581

Gronoff, G., Lilensten, J., Simon, C., Witasse, O., Thissen, R., Dutuit, O., and Alcaraz, C. (2007). Modelling dications in the diurnal ionosphere of Venus. Astron. Astrophys., 465(2), 641–645. https://doi.org/10.1051/0004-6361:20065991

Gu, H., Cui, J., He, Z. G., and Zhong, J. H. (2020). A MAVEN investigation of O++ in the dayside Martian ionosphere. Earth Planet. Phys., 4(1), 11–16. https://doi.org/10.26464/epp2020009

Hoffman, J. H. (1967). Composition measurements of the topside ionosphere. Science, 155(3760), 322–324. https://doi.org/10.1126/science.155.3760.322

Hoffman, J. H., Dodson, W. H., Lippincott, C. R., and Hammack, H. D. (1974). Initial ion composition results from the Isis 2 satellite. J. Geophys. Res., 79(28), 4246–4251. https://doi.org/10.1029/JA079i028p04246

Itikawa, Y. (2002). Cross sections for electron collisions with carbon dioxide. J. Phys. Chem. Ref. Data, 31(3), 749–769. https://doi.org/10.1063/1.1481879

Jakosky, B. M., Lin, R. P., Grebowsky, J. M., Luhmann, J. G., Mitchell, D. F., Beutelschies, G., Priser, T., Acuna, M., Andersson L., … Zurek, R. (2015). The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev., 195(1–4), 3–48. https://doi.org/10.1007/s11214-015-0139-x

Lilensten, J., Witasse, O., Simon, C., Soldi-Lose, H., Dutuit, O., Thissen, R., and Alcaraz, C. (2005). Prediction of a N2++ layer in the upper atmosphere of Titan. Geophys. Res. Lett., 32(3), L03203. https://doi.org/10.1029/2004GL021432

Lilensten, J., Simon Wedlund, C., Barthélémy, M., Thissen, R., Ehrenreich, D., Gronoff, G., and Witasse, O. (2013). Dications and thermal ions in planetary atmospheric escape. Icarus, 222(1), 169–187. https://doi.org/10.1016/j.icarus.2012.09.034

Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., … Nolan, J. T. (2015). The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev., 195(1-4), 49–73. https://doi.org/10.1007/s11214-014-0091-1

Masuoka, T. (1994). Single- and double-photoionization cross sections of carbon dioxide (CO2) and ionic fragmentation of CO2+ and CO22+. Phys. Rev. A, 50(5), 3886–3894. https://doi.org/10.1103/PhysRevA.50.3886

Mathur, D., Andersen, L. H., Hvelplund, P., Kella, D., and Safvan, C. P. (1995). Long-lived, doubly charged diatomic and triatomic molecular ions. J. Phys. B At. Mol. Phys., 28(15), 3415–3426. https://doi.org/10.1088/0953-4075/28/15/027

Matta, M., Withers, P., and Mendillo, M. (2013). The composition of Mars' topside ionosphere: Effects of hydrogen. J. Geophys. Res. Space Phys., 118(5), 2681–2693. https://doi.org/10.1002/jgra.50104

Matta, M., Galand, M., Moore, L., Mendillo, M., and Withers, P. (2014). Numerical simulations of ion and electron temperatures in the ionosphere of Mars: Multiple ions and diurnal variations. Icarus, 227, 78–88. https://doi.org/10.1016/j.icarus.2013.09.006

McFadden, J. P., Kortmann, O., Curtis, D., Dalton, G., Johnson, G., Abiad, R., Sterling, R., Hatch, K., Berg, P., … Jakosky, B. (2015). MAVEN suprathermal and thermal ion compostion (STATIC) instrument. Space Sci. Rev., 195(1-4), 199–256. https://doi.org/10.1007/s11214-015-0175-6

Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1–4), 495–528. https://doi.org/10.1007/s11214-015-0232-1

Peterson, W. K., Fowler, C. M., Andersson, L. A., Thiemann, E. M. B., Jain, S. K., Mayyasi, M., Esman, T. M., Yelle, R., Benna, M., and Espley, J. (2018). Martian electron temperatures in the subsolar region: MAVEN observations compared to a one-dimensional model. J. Geophys. Res. Space Phys., 123(7), 5960–5973. https://doi.org/10.1029/2018JA025406

Schunk, R. W., and Nagy, A. F. (2009). Ionospheres: Physics, Plasma Physics, and Chemistry (2nd ed). New York: Cambridge Univ. Press.222

Seiersen, K., Al-Khalili, A., Heber, O., Jensen, M. J., Nielsen, I. B., Pedersen, H. B., Safvan, C. P., and Andersen, L. H. (2003). Dissociative recombination of the cation and dication of CO2. Phys. Rev. A, 68(2), 022708. https://doi.org/10.1103/PhysRevA.68.022708

Simon, C., Lilensten, J., Dutuit, O., Thissen, R., Witasse, O., Alcaraz, C., and Soldi-Lose, H. (2005). Prediction and modelling of doubly-charged ions in the Earth’s upper atmosphere. Ann. Geophys., 23(3), 781–797. https://doi.org/10.5194/angeo-23-781-2005

Slattery, A. E., Field, T. A., Ahmad, M., Hall, R. I., Lambourne, J., Penent, F., Lablanquie, P., and Eland, J. H. D. (2005). Spectroscopy and metastability of CO22+ molecular ions. J. Chem. Phys., 122(8), 084317. https://doi.org/10.1063/1.1850895

Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res. Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559

Taylor, Jr. H. A. (1973). Parametric description of thermospheric ion composition results. J. Geophys. Res., 78(1), 315–319. https://doi.org/10.1029/JA078i001p00315

Taylor, H. A., Brinton, H. C., Wagner, T. C. G., Blackwell, B. H., and Cordier, G. R. (1980). Bennett ion mass spectrometers on the Pioneer Venus Bus and orbiter. IEEE Trans. Geosci. Remote Sens., GE-18(1), 44–49. https://doi.org/10.1109/TGRS.1980.350259

Thiemann, E. M. B., Chamberlin, P. C., Eparvier, F. G., Templeman, B., Woods, T. N., Bougher, S. W., and Jakosky, B. M. (2017). The MAVEN EUVM model of solar spectral irradiance variability at Mars: Algorithms and results. J. Geophys. Res. Space Phys., 122(3), 2748–2767. https://doi.org/10.1002/2016JA023512

Thissen, R., Witasse, O., Dutuit, O., Wedlund, C. S., Gronoff, G., and Lilensten, J. (2011). Doubly-charged ions in the planetary ionospheres: a review. Phys. Chem. Chem. Phys., 13(41), 18264–18287. https://doi.org/10.1039/C1CP21957J

Witasse, O., Dutuit, O., Lilensten, J., Thissen, R., Zabka, J., Alcaraz, C., Blelly, P. L., Bougher, S. W., Engel, S., … Seiersen, K. (2002). Prediction of a CO22+ layer in the atmosphere of Mars. Geophys. Res. Lett., 29(8), 104–1. https://doi.org/10.1029/2002GL014781

Witasse, O., Dutuit, O., Lilensten, J., Thissen, R., Zabka, J., Alcaraz, C., Blelly, P. L., Bougher, S. W., Engel, S., … Seiersen, K. (2003). Correction to “Prediction of a CO22+ layer in the atmosphere of Mars”. Geophys. Res. Lett., 30(7), 1360. https://doi.org/10.1029/2003GL017007

Withers, P., Vogt, M., Mahaffy, P., Benna, M., Elrod, M., and Jakosky, B. (2015). Changes in the thermosphere and ionosphere of Mars from Viking to MAVEN. Geophys. Res. Lett., 42(21), 9071–9079. https://doi.org/10.1002/2015GL065985

Wu, X. S., Cui, J., Xu, S. S., Lillis, R. J., Yelle, R. V., Edberg, N. J. T., Vigren, E., Rong, Z. J., Fan, K., … Mitchell, D. L. (2019). The morphology of the topside Martian ionosphere: implications on bulk ion flow. J. Geophys. Res. Planets, 124(3), 734–751. https://doi.org/10.1029/2018JE005895

[1]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[2]

YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037

[3]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[4]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[5]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[6]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[7]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[8]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics. doi: 10.26464/epp2020064

[9]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[10]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[11]

Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006

[12]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[13]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[14]

Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003

[15]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[16]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Observation of CO2++ dication in the dayside Martian upper atmosphere

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei