Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhou, R. X., Gu, X. D., Yang, K. X., Li, G. S., Ni, B. B., Yi, J., Chen, L., Zhao, F. T., Zhao, Z. Y., Wang, Q., Zhou, L. Q. (2020). A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method. Earth Planet. Phys., 4(2), 120–130doi: 10.26464/epp2020018

2020, 4(2): 120-130. doi: 10.26464/epp2020018

SPACE PHYSICS: IONOSPHERIC PHYSICS

A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method

1. 

Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China

2. 

State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China

Corresponding author: XuDong Gu, guxudong@whu.edu.cnBinBin Ni, bbni@whu.edu.cn

Received Date: 2019-12-28
Web Publishing Date: 2020-03-01

As a dispersive wave mode produced by lightning strokes, tweek atmospherics provide important hints of lower ionospheric (i.e., D-region) electron density. Based on data accumulation from the WHU ELF/VLF receiver system, we develop an automatic detection module in terms of the maximum-entropy-spectral-estimation (MESE) method to identify unambiguous instances of low latitude tweeks. We justify the feasibility of our procedure through a detailed analysis of the data observed at the Suizhou Station (31.57°N, 113.32°E) on 17 February 2016. A total of 3961 tweeks were registered by visual inspection; the automatic detection method captured 4342 tweeks, of which 3361 were correct ones, producing a correctness percentage of 77.4% (= 3361/4342) and a false alarm rate of 22.6% (= 981/4342). A Short-Time Fourier Transformation (STFT) was also applied to trace the power spectral profiles of identified tweeks and to evaluate the tweek propagation distance. It is found that the fitting accuracy of the frequency–time curve and the relative difference of propagation distance between the two methods through the slope and through the intercept can be used to further improve the accuracy of automatic tweek identification. We suggest that our automatic tweek detection and analysis method therefore supplies a valuable means to investigate features of low latitude tweek atmospherics and associated ionospheric parameters comprehensively.

Key words: tweeks, automatic detection, WHU-VLF receiver

Burg, J. P. (1975). Maximum Entropy Spectrum Analysis. Stanford: Stanford University.222

Carpenter, R. J., Jordan, G. J., Macphail, M. K., and Hill, R. S. (2012). Near-tropical Early Eocene terrestrial temperatures at the Australo Antarctic margin, western Tasmania. Geology, 40(3), 267–270. https://doi.org/10.1130/G32584.1

Chen, Y. P., Yang, G. B., Ni, B. B., Zhao, Z. Y., Gu, X. D., Zhou, C., and Wang, F. (2016). Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Adv. Space Res., 57(9), 1871–1880. https://doi.org/10.1016/j.asr.2016.01.023

Chen, Y. P., Ni, B. B., Gu, X. D., Zhao, Z. Y., Yang, G. B., Zhou, C., and Zhang, Y. N. (2017). First observations of low latitude whistlers using WHU ELF/VLF receiver system. Sci. China Technol. Sci., 60(1), 166–174. https://doi.org/10.1007/s11431-016-6103-5

Clilverd, M. A., Rodger, C. K., Thomson, N. R., Brundell, J. B., Ulich, T., Lichtenberger, J., Cobbett, N., Collier, A. B., Menk, F. W., … Turunen, E. (2009). Remote sensing space weather events: Antarctic-Arctic Radiation-belt (Dynamic) Deposition-VLF Atmospheric Research Konsortium network. Space Wea., 7(4), S04001. https://doi.org/10.1029/2008SW000412

Cohen, M. B., Inan, U. S., Gołkowski, M., and McCarrick, M. J. (2010). ELF/VLF wave generation via ionospheric HF heating: Experimental comparison of amplitude modulation, beam painting, and geometric modulation. J. Geophys. Res. Space Phys., 115(A2), A02302. https://doi.org/10.1029/2009JA014410

Dowden, R. L., Brundell, J. B., and Rodger, C. J. (2002). VLF lightning location by time of group arrival (TOGA) at multiple sites. J. Atmos. Sol.-Terr. Phys., 64(7), 817–830. https://doi.org/10.1016/s1364-6826(02)00085-8

Kumar, S., Dixit, S. K., and Gwal, A. K. (1994). Propagation of tweek atmospherics in the earth-ionosphere wave guide. Il Nuovo Cimento C, 17(3), 275–280. https://doi.org/10.1007/bf02509168

Kumar, S., Kishore, A., and Ramachandran, V. (2008). Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance. Ann. Geophys., 26(6), 1451–1459. https://doi.org/10.5194/angeo-26-1451-2008

Kumar, S., Deo, A., and Ramachandran, V. (2009). Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region. Earth Planets Space, 61(7), 905–911. https://doi.org/10.1186/BF03353201

Lay, E. H., Holzworth, R. H., Rodger, C. J., Thomas, J. N., Pinto, O. Jr., and Dowden, R. L. (2004). WWLL global lightning detection system: Regional validation study in Brazil. Geophys. Res. Lett., 31(3), L03102. https://doi.org/10.1029/2003GL018882

Maurya, A. K., Singh, R., Veenadhari, B., Kumar, S., Cohen, M. B., Selvakumaran, R., Pant, P., Singh, A. K., Siingh, D., and Inan, U. S. (2012). Morphological features of tweeks and nighttime D region ionosphere at tweek reflection height from the observations in the low-latitude Indian sector. J. Geophys. Res. Space Phys., 117(A5), A05301. https://doi.org/10.1029/2011JA016976

Ohya, H., Shiokwa, K., and Miyoshi, Y. (2008). Development of an automatic procedure to estimate the reflection height of tweek atmospherics. Earth Planets Space, 60(8), 837–843. https://doi.org/10.1186/BF03352835

Ohya, H., Shiokawa, K., and Miyoshi, Y. (2011). Long-term variations in tweek reflection height in the D and lower E regions of the ionosphere. J. Geophys. Res. Space Phys., 116(A10), A10322. https://doi.org/10.1029/2011JA016800

Ohya, H., Tsuchiya, F., Nakata, H., Shiokawa, K., Miyoshi, Y., Yamashita, K., and Takahashi, Y. (2012). Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009. J. Geophys. Res. Space Phys., 117(A11), A11310. https://doi.org/10.1029/2012JA018151

Ohya, H., Shiokawa, K., and Miyoshi, Y. (2015). Daytime tweek atmospherics. J. Geophys. Res. Space Phys., 120(1), 654–665. https://doi.org/10.1002/2014JA020375

Outsu, J. (1960). Numerical study of tweeks based on waveguide mode theory. Proc. Res. Inst. Atmos., Nagoya University, 7, 58-71.222

Ramachandran, V., Prakash, J. N., Deo, A., and Kumar, S. (2007). Lightning stroke distance estimation from single station observation and validation with WWLLN data. Ann. Geophys., 25(7), 1509–1517. https://doi.org/10.5194/angeo-25-1509-2007

Reeve, C. D., and Rycroft, M. J. (1972). The eclipsed lower ionosphere as investigated by natural very low frequency radio signals. J. Atmos. Sol.-Terr. Phys., 34(4), 667–672. https://doi.org/10.1016/0021-9169(72)90154-7

Singh, R., Veenadhari, B., Maurya, A. K., Cohen, M. B., Kumar, S., Selvakumaran, R., Pant, P., Singh, A. K., and Inan, U. S. (2011). D-region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF-VLF tweek observations in the Indian sector. J. Geophys. Res. Space Phys., 116(A10), A10301. https://doi.org/10.1029/2011JA016641

Volland, H., Schmolders, M., Prölss, G. W., and Schäfer, J. (1987). VLF propagation parameters derived from sferics observations at high southern latitudes. J. Atmos. Sol.-Terr. Phys., 49(1), 33–41. https://doi.org/10.1016/0021-9169(87)90079-1

Wang, Y. P., Lu, G. P., Ma, M., Zhang, H. B., Fan, Y. F., Liu, G. J., Wan, Z. R., Wang, Y., Peng, K. M., … Zhou, R. X. (2019). Triangulation of red sprites observed above a mesoscale convective system in North China. Earth Planet. Phys., 3(2), 111–125. https://doi.org/10.26464/epp2019015

Yamashita, M. (1978). Propagation of tweek atmospherics. J. Atmos. Sol.-Terr. Phys., 40(2), 151–156. https://doi.org/10.1016/0021-9169(78)90019-3

Yi, J., Gu, X. D., Li, Z. P., Lin, R. T., Cai, Y. H., Chen, L., Ni, B. B., and Yue, X. A. (2019). Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models. Chinese J. Geophys., 62(2), 3223–3234. https://doi.org/10.6038/cjg2019N0190

Yi, J., Gu, X. D., Cheng, W., Tang, X. Y., Chen, L., Ni, B. B., Zhou, R. X., Zhao, Z. Y., Wang, Q., and Zhou, L. Q. (2020). A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2 Occurrence features and associated ionospheric parameters. Earth Planet. Phys., 4(3), 1–8. https://doi.org/10.26464/epp2020023

Yusop, N., Ya'Acob, N., Shariff, K. K. M., Yusof, A. L., Ali, M. T., Idris, A., and Ali, D. M. (2013). Nighttime D-region ionosphere characteristics from tweek atmospherics observed in the North America Region. In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). Melaka: IEEE. https://doi.org/10.1109/APACE.2012.6457641222

[1]

Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics. doi: 10.26464/epp2020023

[2]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[3]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[4]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method

RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou