Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Chen, C. X., and Wang, C. P. (2019). Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail. Earth Planet. Phys., 3(6), 474–480.. http://doi.org/10.26464/epp2019049

2019, 3(6): 474-480. doi: 10.26464/epp2019049

SPACE PHYSICS: MAGNETOSPHERIC PHYSICS

Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Department of Atmospheric and Oceanic Sciences, University of California, Los Angeles, CA, USA

Corresponding author: ChuXin Chen, chuxin@ustc.edu.cn

Received Date: 2019-06-25
Web Publishing Date: 2019-09-12

The ion-to-electron temperature ratio is a good indicator of the processes involved in the plasma sheet. Observations have suggested that patchy reconnection and the resulting earthward bursty bulk flows (BBFs) transport may be involved in causing the lower temperature ratios at smaller radial distances during southward IMF periods. In this paper, we estimate theoretically how a patchy magnetic reconnection electric field can accelerate ions and electrons differently. If both ions and electrons are non-adiabatically accelerated only once within each reconnection, the temperature ratio would be preserved. However, when reconnection occurs closer to the Earth where magnetic field lines are shorter, particles mirrored back from the ionosphere can cross the reconnection region more than once within one reconnection; and electrons, moving faster than ions, can have more crossings than do ions, leading to electrons being accelerated more than ions. Thus as particles are transported from tail to the near-Earth by BBFs through multiple reconnection, electrons should be accelerated by the reconnection electric field more times than are ions, which can explain the lower temperature ratios observed closer to the Earth.

Key words: the ion-to-electron temperature ratio, plasma sheet, patchy magnetic reconnection, non-adiabatical acceleration

Angelopoulos, V., Kennel, C. F., Coroniti, F. V., Pellat, R., Kivelson, M. G., Walker, R. J., Russell, C. T., Baumjohann, W., Feldman, W. C., and Gosling, J. T. (1994). Statistical characteristics of bursty bulk flow events. J. Geophys. Res. Space Phys., 99(A11), 21257–21280. https://doi.org/10.1029/94JA01263

Borovsky, J. E., Thomsen, M. F., Elphic, R. C., Cayton, T. E., and McComas, D. J. (1998). The transport of plasma sheet material from the distant tail to geosynchronous orbit. J. Geophys. Res. Space Phys., 103(A9), 20297–20331. https://doi.org/10.1029/97JA03144

Büchner, J., and Zelenyi, L. M. (1989). Regular and chaotic charged particle motion in magnetotaillike field reversals: 1. Basic theory of trapped motion. J. Geophys. Res. Space Phys., 94(A9), 11821–11842. https://doi.org/10.1029/JA094iA09p11821

Chen, C. X., and Wolf, R. A. (1999). Theory of thin-filament motion in Earth’s magnetotail and its application to bursty bulk flows. J. Geophys. Res. Space Phys., 104(A7), 14613–14626. https://doi.org/10.1029/1999JA900005

Chen, C. X. (2013). Theoretical constraints on the cross-tail width of bursty bulk flows. Ann. Geophys., 31(12), 2179–2192. https://doi.org/10.5194/angeo-31-2179-2013

Chen, C. X. (2016). Substorm onset: A switch on the sequence of transport from decreasing entropy to increasing entropy. Geophys. Res. Lett., 43(10), 4834–4840. https://doi.org/10.1002/2016GL069114

Hardy, D. A., Gussenhoven, M. S., and Brautigam, D. (1989). A statistical model of auroral ion precipitation. J. Geophys. Res. Space Phys., 94(A1), 370–392. https://doi.org/10.1029/JA094iA01p00370

Hill, T. W. (1975). Magnetic merging in a collisionless plasma. J. Geophys. Res., 80(34), 4689–4699. https://doi.org/10.1029/JA080i034p04689

Kiehas, S. A., Runov, A., Angelopoulos, V., Hietala, H., and Korovinksiy, D. (2018). Magnetotail fast flow occurrence rate and dawn-dusk asymmetry at XGMS ~ –60 RE. J. Geophys. Res. Space Phys., 123(3), 1767–1778. https://doi.org/10.1002/2017JA024776

Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk, M., Asano, Y., Vörös, Z., Zhang, T. L., … Balogh, A. (2004). Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett., 31(9), L09804. https://doi.org/10.1029/2004GL019558

Onsager, T. G., Thomsen, M. F., Elphic, R. C., and Gosling, J. T. (1991). Model of electron and ion distributions in the plasma sheet boundary layer. J. Geophys. Res. Space Phys., 96(A12), 20999–21011. https://doi.org/10.1029/91JA01983

Onsager, T. G., Scudder, J. D., Lockwood, M., and Russell, C. T. (2001). Reconnection at the high-latitude magnetopause during northward interplanetary magnetic field conditions. J. Geophys. Res. Space Phys., 106(A11), 25467–25488. https://doi.org/10.1029/2000JA000444

Paschmann, G., Haaland, S., and Treumann, R. (2003). In situ measurements in the auroral plasma. In G. Paschmann, et al. (Eds.), Auroral Plasma Physics (pp. 93-208). Dordrecht, Netherlands: Springer. https://doi.org/10.1007/978-94-007-1086-3

Raj, A., Phan, T., Lin, R. P., and Angelopoulos, V. (2002). Wind survey of high-speed bulk flows and field-aligned beams in the near-Earth plasma sheet. J. Geophys. Res. Space Phys., 107(A12), SMP 3-1–SMP 3-17. https://doi.org/10.1029/2001JA007547

Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., and Russell, C. T. (1984). A survey of dayside flux transfer events observed by ISEE 1 and 2 magnetometers. J. Geophys. Res. Space Phys., 89(A2), 786–800. https://doi.org/10.1029/JA089iA02p00786

Schriver, D., Ashour-Abdalla, M., and Richard, R. L. (1998). On the origin of the ion-electron temperature difference in the plasma sheet. J. Geophys. Res. Space Phys., 103(A7), 14879–14895. https://doi.org/10.1029/98JA00017

Slavin, J. A., Smith, E. J., Sibeck, D. G., Baker, D. N., Zwickl, R. D., and Akasofu, S. I. (1985). An ISEE 3 study of average and substorm conditions in the distant magnetotail. J. Geophys. Res. Space Phys., 90(A11), 10875–10895. https://doi.org/10.1029/JA090iA11p10875

Speiser, T. W. (1965). Particle trajectories in model current sheets: 1. Analytical solutions. J. Geophys. Res., 70(17), 4219–4226. https://doi.org/10.1029/JZ070i017p04219

Tsyganenko, N. A. (1995). Modeling the Earth’s magnetospheric magnetic field confined within a realistic magnetopause. J. Geophys. Res. Space Phys., 100(A4), 5599–5612. https://doi.org/10.1029/94JA03193

Tsyganenko, N. A., and Mukai, T. (2003). Tail plasma sheet models derived from Geotail particle data. J. Geophys. Res. Space Phys., 108(A3), 1136. https://doi.org/10.1029/2002JA009707

Wang, C. P., Lyons, L. R., Wolf, R. A., Nagai, T., Weygand, J. M., and Lui, A. T. Y. (2009). The plasma sheet pV5/3 and nv and associated plasma and energy transport for different convection strengths and AE levels. J. Geophys. Res. Space Phys., 114(A9), A00D02. https://doi.org/10.1029/2008JA013849

Wang, C. P., Gkioulidou, M., Lyons, L. R., and Angelopoulos, V. (2012). Spatial distributions of the ion to electron temperature ratio in the magnetosheath and plasma sheet. J. Geophys. Res. Space Phys., 117(A8), A08215. https://doi.org/10.1029/2012JA017658

Wing, S., Johnson, J. R., Chaston, C. C., Echim, M., Escoubet, C. P., Lavraud, B., Lemon, C., Nykyri, K., Otto, A., … Wang, C. P. (2014). Review of solar wind entry into and transport within the plasma sheet. Space Sci. Rev., 184(1-4), 33–86. https://doi.org/10.1007/s11214-014-0108-9

Zesta, E., Donovan, E., Lyons, L., Enno, G., Murphree, J. S., and Cogger, L. (2002). Two-dimensional structure of auroral poleward boundary intensifications. J. Geophys. Res. Space Phys., 107(A11), SIA 6-1–SIA 6-20. https://doi.org/10.1029/2001JA000260

[1]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[2]

ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012

[3]

ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics, 6, 465-473. doi: 10.26464/epp2022041

[4]

BoJing Zhu, Hui Yan, David A Yuen, YaoLin Shi, 2019: Electron acceleration in interaction of magnetic islands in large temporal-spatial turbulent magnetic reconnection, Earth and Planetary Physics, 3, 17-25. doi: 10.26464/epp2019003

[5]

HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019

[6]

Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022

[7]

MoRan Liu, Chen Zhou, Ting Feng, 2023: Electron acceleration by Langmuir turbulence in ionospheric heating, Earth and Planetary Physics. doi: 10.26464/epp2023001

[8]

Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038

[9]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[10]

Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051

[11]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[12]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[13]

EunJin Jang, Chao Yue, QiuGang Zong, SuiYan Fu, HaoBo Fu, 2021: The effect of non-storm time substorms on the ring current dynamics, Earth and Planetary Physics, 5, 251-258. doi: 10.26464/epp2021032

[14]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[15]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[16]

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044

[17]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

[18]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[19]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[20]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail

ChuXin Chen, Chih-Ping Wang