Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Du, Q. Z., Wang, W. Y., Sun, W. H., and Fu, L.-Y. (2022). Seismic attenuation compensation with spectral-shaping regularization. Earth Planet. Phys., 6(3), 259–274.

2022, 6(3): 259-274. doi: 10.26464/epp2022024


Seismic attenuation compensation with spectral-shaping regularization


Shandong Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China


Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China


Key Laboratory of Geophysical Prospecting, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266580, China


Department of Physics, University of Alberta, Edmonton, AB, T6G 2EI, Canada

Key points:
  • We designed an adaptive shaping operator based on the frequency spectra of seismic data and introduced it into inverse-Q filters.
  • The data-driven shaping operator can balance the spectral energy distribution of the compensated records through shaping regularization.
  • The proposed method can mitigate the relative leakage of low-frequency energy after the high-frequency compensation.

Corresponding author: QiZhen Du,

Received Date: 2021-11-25
Web Publishing Date: 2022-03-24

Because of the viscoelasticity of the subsurface medium, seismic waves will inherently attenuate during propagation, which lowers the resolution of the acquired seismic records. Inverse-Q filtering, as a typical approach to compensating for seismic attenuation, can efficiently recover high-resolution seismic data from attenuation. Whereas most efforts are focused on compensating for high-frequency energy and improving the stability of amplitude compensation by inverse-Q filtering, low-frequency leakage may occur as the high-frequency component is boosted. In this article, we propose a compensation scheme that promotes the preservation of low-frequency energy in the seismic data. We constructed an adaptive shaping operator based on spectral-shaping regularization by tailoring the frequency spectra of the seismic data. We then performed inverse-Q filtering in an inversion scheme. This data-driven shaping operator can regularize and balance the spectral-energy distribution for the compensated records and can maintain the low-frequency ratio by constraining the overcompensation for high-frequency energy. Synthetic tests and applications on prestack common-reflection-point gathers indicated that the proposed method can preserve the relative energy of low-frequency components while fulfilling stable high-frequency compensation.

Key words: seismic attenuation compensation, spectral-shaping regularization, data-driven shaping operator, offset-related inverse-Q filter

Bai, M., Chen, X. H., Wu, J., Chen, Y. K., Liu, G. C., and Wang, E. J. (2016). Multiple-component Gaussian beam reverse-time migration based on attenuation compensation. Chin. J. Geophys. (in Chinese), 59(9), 3379–3393.

Bai, T., Tsvankin, I., and Wu, X. M. (2017). Waveform inversion for attenuation estimation in anisotropic media. Geophysics, 82(4), WA83–WA93.

Bickel, S. H., and Natarajan, R. R. (1985). Plane-wave Q deconvolution. Geophysics, 50(9), 1426–1439.

Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28(2), 179–191.

Blanch, J. O., Robertsson, J. O. A., and Symes, W. W. (1995). Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics, 60(1), 176–184.

Braga, I. L. S., and Moraes, F. S. (2013). High-resolution gathers by inverse Q filtering in the wavelet domain. Geophysics, 78(2), V53–V61.

Brzostowski, M. A., and McMechan, G. A. (1992). 3-D tomographic imaging of near-surface seismic velocity and attenuation. Geophysics, 57(3), 396–403.

Carcione, J. M., Kosloff, D., and Kosloff, R. (1988). Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int., 93(2), 393–401.

Carcione, J. M., Cavallini, F., Mainardi, F., and Hanyga, A. (2002). Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure Appl. Geophys., 159(7), 1719–1736.

Chang, W. F., and McMechan, G. A. (1994). 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4), 597–609.

Chen, S. Q., Wei, Q., Liu, L. B., and Li, X. Y. (2018). Data-driven attenuation compensation via a shaping regularization scheme. IEEE Geosci. Remote Sens. Lett., 15(11), 1667–1671.

Chernov, L. A. (1960). Wave Propagation in a Random Medium (Silverman, R. A., trans.). New York: McGraw-Hill.

Dasgupta, R., and Clark, R. A. (1998). Estimation of Q from surface seismic reflection data. Geophysics, 63(6), 2120–2128.

Deng, F., and McMechan, G. A. (2007). True-amplitude prestack depth migration. Geophysics, 72(3), S155–S166.

Ding, Y., Du, Q. Z., Liu, L. H., and Zhang, Q. (2019). Feature analysis and compensation of seismic low-frequency based on compressed sensing and broad-band Yu-type low-passing shaping filter. Chin. J. Geophys. (in Chinese), 62(6), 2267–2275.

Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68–86.

Du, Q. Z., Zhu, Y. T., and Ba, J. (2012). Polarity reversal correction for elastic reverse time migration. Geophysics, 77(2), S31–S41.

Du, Q. Z., Guo, C. F., Zhao, Q., Gong, X. F., Wang, C. X., and Li, X. Y. (2017). Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics, 82(2), S111–S127.

Dutta, G., and Schuster, G. T. (2016). Wave-equation Q tomography. Geophysics, 81(6), R471–R484.

Fomel, S. (2007). Shaping regularization in geophysical-estimation problems. Geophysics, 72(2), R29–R36.

Futterman, W. I. (1962). Dispersive body waves. J. Geophys. Res., 67(13), 5279–5291.

Guo, P., McMechan, G. A., and Guan, H. M. (2016). Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics, 81(5), S281–S297.

Hale, D. (1981). An inverse Q-filter. Stanford Exploration Project 26. 231–244.

Hale, D. (1982). Q-adaptive deconvolution. In Proceedings of 1982 SEG Annual Meeting (pp. 82–83). Dallas, Texas: Society of Exploration Geophysicists.

Hargreaves, N. D., and Calvert, A. J. (1991). Inverse Q filtering by Fourier transform. Geophysics, 56(4), 519–527.

Hestenes, M. R., and Steifel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436.

Julian, B. R., Gubbins, D. (1977). Three-dimensional seismic ray tracing. J. Geophys., 43(1), 95–113.

Kamei, R., and Pratt, R. G. (2008). Waveform tomography strategies for imaging attenuation structure with cross-hole data. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008. Rome, Italy, EAGE.

Kamei, R., and Pratt, R. G. (2013). Inversion strategies for visco-acoustic waveform inversion. Geophys. J. Int., 194(2), 859–884.

Kjartansson, E. (1979). Constant Q-wave propagation and attenuation. J. Geophys. Res., 84(B9), 4737–4748.

Kolsky, H. (1953). Stress Waves in Solids. Oxford: Clarendon Press.

Kolsky, H. (1956). LXXI. The propagation of stress pulses in viscoelastic solids. Philos. Mag., 1(8), 693–710.

Li, G. F., Liu, Y., Zheng, H., and Huang, W. (2015). Absorption decomposition and compensation via a two-step scheme. Geophysics, 80(6), V145–V155.

Li, Q. Z. (1993). A Systematical Analysis of High Resolution Seismic Exploration (in Chinese). Beijing: Petroleum Industry Press.

Li, Q. Z. (2017). High-Resolution Seismic Exploration. Tulsa, Oklahoma: Society of Exploration Geophysicists.

Liao, O. B., and McMechan, G. A. (1995). 2.5D full-wavefield viscoacoustic inversion. Geophys. Prospect., 43(8), 1043–1059.

Liu, Y. S., Xu, T., Wang, Y. H., Teng, J. W., Badal, J., and Lan, H. Q. (2019). An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method. Earth Planet. Phys., 3(4), 342–357.

Margrave, G. F., Lamoureux, M. P., and Henley, D. C. (2011). Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics, 76(3), W15–W30.

Margrave, G. F., Lamoureux, M. P., Grossman, J. P., and Iliescu, V. (2002). Gabor deconvolution of seismic data for source waveform and Q correction. In Proceedings of 2002 SEG Annual Meeting (pp. 2190–2193). Salt Lake City, Utah: Society of Exploration Geophysicists.

Mavko, G., and Nur, A. (1975). Melt squirt in the asthenosphere. J. Geophys. Res., 80(11), 1444–1448.

Mittet, R., Sollie, R., and Hokstad, K. (1995). Prestack depth migration with compensation for absorption and dispersion. Geophysics, 60(5), 1485–1494.

Quan, Y. L., and Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method. Geophysics, 62(3), 895–905.

Rao, Y., and Wang, Y. H. (2019). Stabilised inverse-Q filtering for seismic characterisation of carbonate reservoirs. J. Geophys. Eng., 16(1), 190–197.

Robertsson, J. O., Blanch, J. O., and Symes, W. W. (1994). Viscoelastic finite-difference modeling. Geophysics, 59(9), 1444–1456.

Shen, Y., Biondi, B., Clapp, R., and Nichols, D. (2014). Wave-equation migration Q analysis (WEMQA). In Proceedings of 2014 SEG Annual Meeting (pp. 3757–3762). Denver, Colorado: Society of Exploration Geophysicists.

Shen, Y., Biondi, B., and Clapp, R. (2018). Q-model building using one-way wave-equation migration Q analysis—Part 1: theory and synthetic test. Geophysics, 83(2), S93–S109.

Shi, X. C., Mao, W. J., and Li, X. L. (2019). Viscoelastic Q-compensated Gaussian beam migration based on vector-wave imaging. Chin. J. Geophys., 64(4), 1480–1491.

Stolt, R. H. (1978). Migration by Fourier transform. Geophysics, 43(1), 23–48.

Sun, J. Z., Zhu, T. Y., and Fomel, S. (2015). Viscoacoustic modeling and imaging using low-rank approximation. Geophysics, 80(5), A103–A108.

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl., 4, 1035–1038.

Tonn, R. (1991). The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods. Geophys. Prospect., 39(1), 1–27.

Traynin, P., Liu, J., and Reilly, J. M. (2008). Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration. In Proceedings of 2008 SEG Annual Meeting (pp. 2412–2416). Las Vegas, Nevada: Society of Exploration Geophysicists.

Treeby, B. E., and Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am., 127(5), 2741–2748.

Varela, C. L., Rosa, A. L. R., and Ulrych, T. J. (1993). Modeling of attenuation and dispersion. Geophysics, 58(8), 1167–1173.

Wang, B. F., Chen, X. H., Li, J. Y., Chen, Z. B., and Liu, G. C. (2015). A stable and efficient attenuation compensation method based on inversion. Chin. J. Geophys., 58(4), 375–386.

Wang, B. F., and Lu, W. K. (2018). An efficient amplitude-preserving generalized S transform and its application in seismic data attenuation compensation. IEEE Trans. Geosci. Remote Sens., 56(2), 859–866.

Wang, S. D. (2011). Attenuation compensation method based on inversion. Appl. Geophys., 8(2), 150–157.

Wang, S. D., and Chen, X. H. (2014). Absorption-compensation method by l1-norm regularization. Geophysics, 79(3), V107–V114.

Wang, Y. F., Ma, X., Zhou, H., and Chen, Y. K. (2018). L1-2 minimization for exact and stable seismic attenuation compensation. Geophys. J. Int., 213(3), 1629–1646.

Wang, Y. H. (2002). A stable and efficient approach of inverse Q filtering. Geophysics, 67(2), 657–663.

Wang, Y. H. (2003). Quantifying the effectiveness of stabilized inverse Q filtering. Geophysics, 68(1), 337–345.

Wang, Y. H. (2004). Q analysis on reflection seismic data. Geophys. Res. Lett., 31(17), L17606.

Wang, Y. H., and Guo, J. (2004a). Modified Kolsky model for seismic attenuation and dispersion. J. Geophys. Eng., 1(3), 187–196.

Wang, Y. H., and Guo, J. (2004b). Seismic migration with inverse Q filtering. Geophys. Res. Lett., 31(21), L21608.

Wang, Y. H. (2006). Inverse Q-filter for seismic resolution enhancement. Geophysics, 71(3), V51–V60.

Wang, Y. H. (2008). Seismic Inverse Q Filtering. Singapore: Blackwell Publishing.

Xie, Y., Xin, K. F., Sun, J., Notfors, C., Biswal, A. K., and Balasubramaniam, M. K. (2009). 3D prestack depth migration with compensation for frequency dependent absorption and dispersion. In Proceedings of 2009 SEG Annual Meeting (pp. 2919–2923). Houston, Texas: Society of Exploration Geophysicists.

Xu, Y., and Chopra, S. (2007). Improving AVO fidelity by NMO stretching and offset-dependent tuning corrections. Lead. Edge, 26(12), 1548–1551.

Xue, Y. J., Cao, J. X., and Wang, X. J. (2019). Inverse Q filtering via synchrosqueezed wavelet transform. Geophysics, 84(2), V121–V132.

Yan, H. Y., and Liu, Y. (2009). Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves. Appl. Geophys., 6(1), 59–69.

Yilmaz, Ö. (2001). Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Tulsa, Oklahoma: Society of Exploration Geophysicists.

Yuan, S. Y., Wang, S. X., Ma, M., Ji, Y. Z., and Deng, L. (2017). Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans. Geosci. Remote Sens., 55(11), 6182–6194.

Zhang, B. L., Ni, S. D., and Chen, Y. L. (2019). Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys., 3(6), 537–546.

Zhang, C. J., and Ulrych, T. J. (2007). Seismic absorption compensation: a least squares inverse scheme. Geophysics, 72(6), R109–R114.

Zhang, G. W., and Gao, J. H. (2018). Inversion-driven attenuation compensation using synchrosqueezing transform. IEEE Geosci. Remote Sens. Lett., 15(1), 132–136.

Zhang, J. F., and Wapenaar, K. (2002). Wavefield extrapolation and prestack depth migration in anelastic inhomogeneous media. Geophys. Prospect., 50(6), 629–643.

Zhang, J. F., Wu, J. Z., and Li, X. Y. (2013). Compensation for absorption and dispersion in prestack migration: an effective Q approach. Geophysics, 78(1), S1–S14.

Zhang, Y., Zhang, P., and Zhang, H. Z. (2010). Compensating for visco-acoustic effects in reverse-time migration. In Proceedings of 2010 SEG Annual Meeting (pp. 3160–3164). Denver, Colorado: Society of Exploration Geophysicists.

Zhu, T. Y., and Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116.


BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055


Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013


Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007


Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030


Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030


Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016


Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040


BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025


Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056


Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048


YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035


Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054


XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017


QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020


Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Seismic attenuation compensation with spectral-shaping regularization

QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu