Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Shao, X. H., Yao, H. J., Liu, Y., Yang, H. F., Tian, B. F., and Fang, L. H. (2022). Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China. Earth Planet. Phys., 6(2), 204–212. http://doi.org/10.26464/epp2022010

2022, 6(2): 204-212. doi: 10.26464/epp2022010

SOLID EARTH: SEISMOLOGY

Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China

1. 

Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Mengcheng National Geophysical Observatory, University of Science and Technology of China, Mengcheng Hefei 233500, China

3. 

CAS Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

4. 

Earth System Science Programme, Faculty of Science, The Chinese University of Hong Kong, Hong Kong 999077, China

5. 

Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China

6. 

Institute of Geophysics, China Earthquake Administration, Beijing 100089, China

Corresponding author: HuaJian Yao, hjyao@ustc.edu.cnYing Liu, liuying7@ustc.edu.cn

Received Date: 2021-08-09
Web Publishing Date: 2022-01-25

The Anninghe fault is a large left-lateral strike-slip fault in southwestern China. It has controlled deposition and magmatic activities since the Proterozoic, and seismic activity occurs frequently. The Mianning−Xichang segment of the Anninghe fault is a seismic gap that has been locked by high stress. Many studies suggest that this segment has great potential for large earthquakes (magnitude >7). We obtained three vertical velocity profiles of the Anninghe fault (between Mianning and Xichang) based on the inversion of P-wave first arrival times. The travel time data were picked from seismograms generated by methane gaseous sources and recorded by three linearly distributed across-fault dense arrays. The inversion results show that the P-wave velocity structures at depths of 0−2 km corresponds well with the local lithology. The Quaternary sediments have low seismic velocities, whereas the igneous rocks, metamorphic rocks, and bedrock have high seismic velocities. We then further discuss the fault activities of the two fault branches of the Anninghe fault in the study region based on small earthquakes (magnitudes between $ {M}_{L} $ 0.5 and $ {M}_{L} $ 2.5) detected by the Xichang array. The eastern fault branch is more active than the western branch and that the fault activities in the eastern branch are different in the northern and southern segments at the border of 28°21′N. The high-resolution models obtained are essential for future earthquake rupture simulations and hazard assessments of the Anninghe fault zone. Future studies of velocity models at greater depths may further explain the complex fault activities in the study region.

Key words: Anninghe fault zone, shallow crust, P-wave velocity, methane gaseous source, fault activity

Bao, X. W., Sun, X. X., Xu, M. J., Eaton, D. W., Song, X. D., Wang, L. S., Ding, Z. F., Mi, N., Li, H., … Wang, P. (2015). Two crustal low-velocity channels beneath SE Tibet revealed by joint inversion of Rayleigh wave dispersion and receiver functions. Earth Planet. Sci. Lett., 415, 16–24. https://doi.org/10.1016/j.jpgl.2015.01.020

Bleibinhaus, F., Hole, J. A., Ryberg, T., and Fuis, G. S. (2007). Structure of the California Coast Ranges and San Andreas Fault at SAFOD from seismic waveform inversion and reflection imaging. J. Geophys. Res.:Solid Earth, 112(B6), B06315. https://doi.org/10.1029/2006JB004611

Catchings, R. D., Rymer, M. J., Goldman, M. R., Hole, J. A., Huggins, R., and Lippus, C. (2002). High-resolution seismic velocities and shallow structure of the San Andreas fault zone at Middle Mountain, Parkfield, California. Bull. Seismol. Soc. Am., 92(6), 2493–2503. https://doi.org/10.1785/0120010263

Chang, L. Q., and Huang, B. Q. (2014). Development of the Anninghe fault in Sichuan. Panzhihua Sci-Tech Inf., 39(4), 1–6.

Chen, W. D., Pei, X. Y., Li, X. P., Li, Y., and Zhang, J. T. (1984). Deep crustal structure and its relation to earthquakes in the Anninghe area. J. Seismol. Res., 7(3), 293–299.

Chen, Z., Burchfiel, B. C., Liu, Y., King, R. W., Royden, L. H., Tang, W., Wang, E., Zhao, J., and Zhang, X. (2000). Global positioning system measurements from eastern Tibet and their implications for India/Eurasia intercontinental deformation. J. Geophys. Res.:Solid Earth, 105(B7), 16215–16217. https://doi.org/10.1029/2000JB900092

Cheng, J. W., Guo, G. H., and Yue, Z. J. (2010). Basic characteristics and earthquake risk analysis of the Anning River fault zone in the west of Sichuan Province. J. Seismol. Res., 33(3), 265–272. https://doi.org/10.3969/j.issn.1000-0666.2010.03.005

Cochran, E. S., Li, Y. G., Shearer, P. M., Barbot, S., Fialko, Y., and Vidale, J. E. (2009). Seismic and geodetic evidence for extensive, long-lived fault damage zones. Geology, 37(4), 315–318. https://doi.org/10.1130/G25306A.1

Fu, Y. Y., Gao, Y., Li, A. B., Li, L., and Chen, A. G. (2017). Lithospheric structure of the southeastern margin of the Tibetan Plateau from Rayleigh wave tomography. J. Geophys. Res.:Solid Earth, 122(6), 4631–4644. https://doi.org/10.1002/2016JB013096

He, H. L., and Ikeda, Y. (2007). Faulting on the Anninghe fault zone, southwest China in late Quaternary and its movement model. Acta Seismol. Sin., 29, 537–548.

Hu, J. F., Badal, J., Yang, H. Y., Li, G. Q., and Peng, H. C. (2018). Comprehensive crustal structure and seismological evidence for lower crustal flow in the southeastern margin of Tibet revealed by receiver functions. Gondwana Res., 55, 42–59. https://doi.org/10.1016/j.gr.2017.11.007

Hu, M. M., Wu, Z. H., Li, J. C., Zhang, K. Q., Reicherter, K., and Bi, W. J. (2021). Late Quaternary left-lateral strike slip rate along the Anninghe–Zemuhe Section of the Xianshuihe–Xiaojiang Fault System and its implication to the clockwise block rotation of the SE margin of the Tibetan Plateau. Geochem. Geophys. Geosyst. https://doi.org/10.1002/essoar.10505860.2

Huang, J. L., Zhao, D. P., and Zheng, S. H. (2002). Lithospheric structure and its relationship to seismic and volcanic activity in southwest China. J. Geophys. Res.:Solid Earth, 107(B10), 2255. https://doi.org/10.1029/2000JB000137

Ji, Z. , Li, Z. , He, R. , Niu, X. , and Wu, W. (2021). Seismic signal characteristics of a new source based on methane gaseous detonation in the Tibetan Plateau. Acta Geosci. Sin. (in Chinese).

King, R. W., Shen, F., Burchfiel, B. C., Royden, L. H., Wang, E., Chen, Z. L., Liu, Y. P., Zhang, X. Y., Zhao, J. X., and Li, Y. L. (1997). Geodetic measurement of crustal motion in southwest China. Geology, 25(2), 179–182. https://doi.org/10.1130/0091-7613(1997)025<0179:GMOCMI>2.3.CO;2

Li, C., van der Hilst, R. D., and Toksöz, M. N. (2006). Constraining P-wave velocity variations in the upper mantle beneath Southeast Asia. Phys. Earth Planet. Inter., 154(2), 180–195. https://doi.org/10.1016/j.pepi.2005.09.008

Li, C., Yao, H. J., Yang, Y., Luo, S., Wang, K. D., Wan, K. S., Wen, J., and Liu, B. (2020). 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications. Earth Planet. Phys., 4(3), 317–328. https://doi.org/10.26464/epp2020026

Li, D. H., Ding, Z. F., Zhan, Y., Wu, P. P., Chang, L. J. and Sun, X. Y. (2021). Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China. Earth Planet. Phys., 5(4), 348–361. https://doi.org/10.26464/epp2021038

Liu, Q. Y., van der Hilst, R. D., Li, Y., Yao, H. J., Chen, J. H., Guo, B., Qi, S. H., Wang, J., Huang, H., and Li, S. C. (2014). Eastward expansion of the Tibetan Plateau by crustal flow and strain partitioning across faults. Nat. Geosci., 7(5), 361–365. https://doi.org/10.1038/NGEO2130

Liu, Y. , Yao, H. J. , Zhang, H. J. , and Fang, H. J. (2021). The community velocity model v. 1.0 of southwest China, constructed from joint body- and surface-wave travel-time tomography. Seismol. Res. Lett. , 92(5), 2972–2987.

Luo, F. (2019). Landslide development characteristics and hazard assessment of Mianning–Xichang section of Anning River. Chengdu: Chengdu University of Technology.

Luo, G., and Liu, M. (2018). Stressing rates and seismicity on the major faults in eastern Tibetan Plateau. J. Geophys. Res.:Solid Earth, 123(12), 10968–10986. https://doi.org/10.1029/2018JB015532

Papadimitriou, E., Wen, X. Z., Karakostas, V., and Jin, X. S. (2004). Earthquake triggering along the Xianshuihe fault zone of western Sichuan, China. Pure Appl. Geophys., 161(8), 1683–1707. https://doi.org/10.1007/s00024-003-2471-4

Pei, X. Y., Chen, W. D., Zhang, J. T., and Li, X. P. (1985). A preliminary study of the relationship between deep crust structures and seismicity through gravity and magnetism data in western Sichuan. Earthq. Res. Sichuan, 2(2), 16–22.

Peng, H. C., Yang, H. Y., Hu, J. F., and Badal, J. (2017). Three-dimensional S-velocity structure of the crust in the southeast margin of the Tibetan plateau and geodynamic implications. J. Asian Earth Sci., 148, 210–222. https://doi.org/10.1016/j.jseaes.2017.09.004

Qian, H., Wu, X. G., Ma, S. H., Cai, C. X., and Tian, H. (1990). Prehistorical earthquakes on the north segment of the Anninghe fault and their significance to seismological research. Earthq. Res. China, 6(4), 43–49.

Qian, H., Tang, R. C., Wen, D. H., and Huang, Z. Z. (1992). Research on the recent surficial faulting on the northern segment of the Anninghe fault zone and earthquake potential. Seismol. Geol., 14(4), 317–323.

Ren, Y. J., Lu, J. L., Li, G., and Ji, P. L. (2018). Analysis of the extension direction of Anning River fault. Gansu Metall., 40(4), 106–108,120. https://doi.org/10.3969/j.issn.1672-4461.2018.04.026

Shao, X. H., Liu, Y., Yao, H. J., Xu, J. J., Cai, H. T., Jin, X., Zhang, Y. Y., Li, H. Y., and Liu, B. (2021). 3-D isotropic and anisotropic shallow crustal structure on Pingtan Island, Fujian, southeastern coast of China. Phys. Earth Planet. Inter., 310, 106620. https://doi.org/10.1016/j.pepi.2020.106620

She, Y. Y., Yao, H. J., Zhai, Q. S., Wang, F. Y., and Tian, X. F. (2018). Shallow crustal structure of the middle-lower Yangtze River region in eastern China from surface-wave tomography of a large volume airgun-shot experiment. Seismol. Res. Lett., 89(3), 1003–1013. https://doi.org/10.1785/0220170232

Tang, R. C., Qian, H., Huang, Z. Z., Wen, D. H., Wu, X. G., Cai, C. X., and Tian, H. (1992). The feature of activity on the north segment of the Anninghe fracture zone since Late Pleistocene. Earthq. Res. China, 8(3), 60–68.

Teves-Costa, P., Matias, L., Oliveira, C. S., and Mendes-Victor, L. A. (1996). Shallow crustal models in the Lisbon area from explosion data using body and surface wave analysis. Tectonophysics, 258(1-4), 171–193. https://doi.org/10.1016/0040-1951(95)00194-8

Wang, C. Y., Chan, W. W., and Mooney, W. D. (2003). Three-dimensional velocity structure of crust and upper mantle in southwestern China and its tectonic implications. J. Geophys. Res.:Solid Earth, 108(B9), 2442. https://doi.org/10.1029/2002JB001973

Wang, X., Zhang, C., and Pei, X. (1998a). New activity on Anninghe fault. Earthq. Res. Sichuan, 4(2442), 13–33.

Wang, X., Zhang, C., and Pei, X. (1998b). Structural activity and evolution since the Late Quaternary on Anninghe faults. Earthq. Res. Sichuan, 4(4), 1–12.

Wen, X. Z. (2000). Character of rupture segmentation of the Xianshuihe–Anninghe–Zemuhe fault zone, western Sichuan. Seismol. Geol., 22(3), 239–249. https://doi.org/10.3969/j.issn.0253-4967.2000.03.005

Wen, X. Z., Fan, J., Yi, G. X., Deng, Y. W., and Long, F. (2008a). A seismic gap on the Anninghe fault in western Sichuan, China. Sci. China Ser. D:Earth Sci., 51(10), 1375–1387. https://doi.org/10.1007/s11430-008-0114-4

Wen, X. Z., Ma, S. L., Xu, X. W., and He, Y. N. (2008b). Historical pattern and behavior of earthquake ruptures along the eastern boundary of the Sichuan–Yunnan faulted-block, southwestern China. Phys. Earth Planet. Inter., 168(1-2), 16–36. https://doi.org/10.1016/j.pepi.2008.04.013

Weng, H. H., Yang, H. F., Zhang, Z. G., and Chen, X. F. (2016). Earthquake rupture extents and coseismic slips promoted by damaged fault zones. J. Geophys. Res.:Solid Earth, 121(6), 4446–4457. https://doi.org/10.1002/2015JB012713

Xu, L. L., Rondenay, S., and van der Hilst, R. D. (2007). Structure of the crust beneath the Southeastern Tibetan Plateau from teleseismic receiver functions. Phys. Earth Planet. Inter., 165(3-4), 176–193. https://doi.org/10.1016/j.pepi.2007.09.002

Xu, Y. B., Tang, R. C., and Zhang, T. G. (1987). The quantitative analysis for the characteristic of SEM micro-surface textures on quartz fragments of Anninghe fault zone and the estimation about the active state of the fault zone. Earthq. Res. China, 3(3), 68–74.

Yang, H. F., Duan, Y. H., Song, J. H., Jiang, X. H., Tian, X. F., Yang, W., Wang, W. T., and Yang, J. (2020). Fine structure of the Chenghai fault zone, Yunnan, China, constrained from teleseismic travel time and ambient noise tomography. J. Geophys. Res.:Solid Earth, 125(7), e2020JB019565. https://doi.org/10.1029/2020JB019565

Yang, H. F., Duan, Y. H., Song, J. H., Wang, W. T., Yang, W., Tian, X. F., and Wang, B. S. (2021). Illuminating high-resolution crustal fault zones using multi-scale dense arrays and airgun source. Earthq. Res. Adv., 1(1), 100001. https://doi.org/10.1016/j.eqrea.2021.100001

Yao, H. J., Beghein, C., and Van Der Hilst, R. D. (2008). Surface wave array tomography in SE Tibet from ambient seismic noise and two-station analysis – II. Crustal and upper-mantle structure. Geophys. J. Int., 173(1), 205–219. https://doi.org/10.1111/j.1365-246X.2007.03696.x

Yi, G. X., Wen, X. Z., Fan, J., and Wang, S. W. (2004). Assessing current faulting behaviors and seismic risk of the Anninghe–Zemuhe fault zone from seismicity parameters. Acta Seismol. Sin., 26(3), 294–303. https://doi.org/10.3321/j.issn:0253-3782.2004.03.008

Zhang, H. J., and Thurber, C. H. (2003). Double-difference tomography: the method and its application to the Hayward fault, California. Bull. Seismol. Soc. Am., 93(5), 1875–1889. https://doi.org/10.1785/0120020190

Zhang, H. J., and Thurber, C. (2006). Development and applications of double-difference seismic tomography. Pure Appl. Geophys., 163(2-3), 373–403. https://doi.org/10.1007/s00024-005-0021-y

Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., … You, X. Z. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812. https://doi.org/10.1130/G20554.1

Zhang, P. Z. (2008). The current state of the tectonic deformation, strain distribution, and deep dynamic processes in the western Sichuan region, eastern margin of the Tibetan Plateau. Science China Ser. D:Earth Sci., 38(9), 1041–1056. https://doi.org/10.3321/j.issn:1006-9267.2008.09.001

Zhang, Z. Q., Yao, H. J., and Yang, Y. (2020). Shear wave velocity structure of the crust and upper mantle in Southeastern Tibet and its geodynamic implications. Sci. China Earth Sci., 63(9), 1278–1293. https://doi.org/10.1007/s11430-020-9625-3

Zhu, A. Y., Zhang, D. N., and Jiang, C. S. (2016). Numerical simulation of the segmentation of the stress state of the Anninghe–Zemuhe–Xiaojiang faults. Sci. China Earth Sci., 59(2), 384–396. https://doi.org/10.1007/s11430-015-5157-8

[1]

Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026

[2]

ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006

[3]

Behzad Hemami, Shahla Feizi Masouleh, Ahmad Ghassemi, 2021: 3D geomechanical modeling of the response of the Wilzetta Fault to saltwater disposal, Earth and Planetary Physics, 5, 559-580. doi: 10.26464/epp2021054

[4]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[5]

JingXing Fang, Feng Qian, HaiMing Zhang, 2020: Analysis of the role of branching angle in the dynamic rupture process on a 3-D branching fault system, Earth and Planetary Physics, 4, 523-531. doi: 10.26464/epp2020043

[6]

RiSheng Chu, LuPei Zhu, ZhiFeng Ding, 2019: Upper-mantle velocity structures beneath the Tibetan Plateau and surrounding areas inferred from triplicated P waveforms, Earth and Planetary Physics, 3, 444-458. doi: 10.26464/epp2019045

[7]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[8]

Bing Cai, QingChen Xu, Xiong Hu, Xuan Cheng, JunFeng Yang, Wen Li, 2021: Analysis of the correlation between horizontal wind and 11-year solar activity over Langfang, China, Earth and Planetary Physics, 5, 270-279. doi: 10.26464/epp2021029

[9]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[10]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[11]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049

[12]

DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014

[13]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[14]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[15]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[16]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

[17]

Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027

[18]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[19]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[20]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China

XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang