Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wang, S., Song, C., Li, S. S., and Li, X. (2022). Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data. Earth Planet. Phys., 6(1), 108–122. http://doi.org/10.26464/epp2022007

2022, 6(1): 108-122. doi: 10.26464/epp2022007

SOLID EARTH: TECTONOPHYSICS, SEISMOLOGY

Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data

1. 

School of Geomatics Science and Technology, Nanjing Tech University, Nanjing 211816, China

2. 

COMET, School of Engineering, Newcastle University, Newcastle, NE1 7RU, UK

3. 

Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, 23955, Saudi Arabia

Corresponding author: Shuai Wang, shwang@njtech.edu.cn

Received Date: 2021-08-02
Web Publishing Date: 2021-12-13

On 21 May 2021 (UTC), an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau. The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake, and especially in proximity to the seismic gaps on the east Kunlun fault. Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake. Range offset displacements depict clear surface ruptures with a total length of ~170 km involving two possible activated fault segments in the earthquake. Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust. The well-resolved slip variations are characterized by five major slip patches along strike and 64% of shallow slip deficit, suggesting a young seismogenic structure. Spatial–temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations, and are well explained by time-dependent afterslip models. Analysis of Global Navigation Satellite System (GNSS) velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block, but exhibits significant lateral heterogeneities, as evidenced by magnetotelluric observations. The block-wide distributed deformation of the east Bayan Har block along with the significant co- and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults, especially the Tuosuo Lake and Maqên–Maqu segments of the Kunlun fault that are known as seismic gaps.

Key words: Madoi earthquake, Bayan Har block, synthetic aperture radar data, co- and post-seismic slip, block-wide distributed deformation, seismic risk

Avouac, J. P., and Tapponnier, P. (1993). Kinematic model of active deformation in central Asia. Geophys. Res. Lett., 20(10), 895–898. https://doi.org/10.1029/93GL00128

Barnhart, W. D., Briggs, R. W., Reitman, N. G., Gold, R. D., and Hayes, G. P. (2015). Evidence for slip partitioning and bimodal slip behavior on a single fault: Surface slip characteristics of the 2013 Mw7.7 Balochistan, Pakistan earthquake. Earth Planet. Sci. Lett., 420, 1–11. https://doi.org/10.1016/j.jpgl.2015.03.027

Bassett, D., Sandwell, D. T., Fialko, Y., and Watts, A. B. (2016). Upper-plate controls on co-seismic slip in the 2011 magnitude 9.0 Tohoku-oki earthquake. Nature, 531(7592), 92–96. https://doi.org/10.1038/NATURE16945

Chen, C. W., and Zebker, H. A. (2000). Network approaches to two-dimen-sional phase unwrapping: Intractability and two new algorithms. J. Opt. Soc. Am. A., 17(3), 401–414. https://doi.org/10.1364/JOSAA.17. 000401

De Zan, F. (2014). Accuracy of incoherent speckle tracking for circular Gaussian signals. IEEE Geosci Remote Sens. Lett., 11(1), 264–267. https://doi.org/10.1109/LGRS.2013.2255259

Diao, F. Q., Xiong, X., Wang, R. J., Walter, T. R., Wang, Y. B., and Wang, K. (2019). Slip rate variation along the Kunlun fault (Tibet): Results from new GPS observations and a viscoelastic earthquake-cycle deformation model. Geophys. Res. Lett., 46(5), 2524–2533. https://doi.org/10.1029/2019GL081940

Dong, J., Cambiotti, G., Wen, H. J., Sabadini, R. and Sun, W. K. (2021). Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations. Earth Planet. Phys., 5(1), 90–104. https://doi.org/10.26464/epp2021010

Duvall, A. R., and Clark, M. K. (2010). Dissipation of fast strike-slip faulting within and beyond northeastern Tibet. Geology, 38(3), 223–226. https://doi.org/10.1130/G30711.1

Elliott, J. R., Walters, R. J., England, P. C., Jackson, J. A., Li, Z., and Parsons, B. (2010). Extension on the Tibetan plateau: recent normal faulting measured by InSAR and body wave seismology. Geophys. J. Int., 183(2), 503–535. https://doi.org/10.1111/J.1365-246X.2010.04754.X

England, P., and Molnar, P. (1997). Active deformation of Asia: From kinematics to dynamics. Science, 278(5338), 647–650. https://doi.org/10.1126/science.278.5338.647

Farr, T. G., Rosen, P. A., Caro, E., Crippen, R., Duren, R., Hensley, S., Kobrick, M., Paller, M., Rodriguez, E., … Alsdorf, D. (2007). The shuttle radar topography mission. Rev. Geophys., 45(2), RG2004. https://doi.org/10.1029/ 2005RG000183

Goldstein, R. M., and Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophys. Res. Lett., 25(21), 4035–4038. https://doi.org/10.1029/1998GL900033

Guo, J., Lin, A., Sun, G., and Zheng, J. (2007). Surface ruptures associated with the 1937 M 7.5 Tuosuo Lake and the 1963 M7.0 Alake Lake earthquakes and the paleoseismicity along the Tuosuo Lake segment of the Kunlun fault, northern Tibet. Bull. Seismol. Soc. Am., 97(2), 474–496. https://doi.org/10.1785/0120050103

He, W. G., Xiong, Z., Yuan, D. Y., Ge, W. P., and Liu, X. W. (2006). Palaeo-earthquake study on the Maqu fault of east Kunlun active fault. Earthq. Res. China, 22(2), 126–134. https://doi.org/10.3969/j.issn.1001-4683.2006.02.002

Helmstetter, A., and Shaw, B. E. (2009). Afterslip and aftershocks in the rate-and-state friction law. J. Geophys. Res.:Solid Earth, 114, B01308. https://doi.org/10.1029/2007JB005077

Huang, S. Y., Yao, H. J., Lu, Z. W., Tian, X. B., Zheng, Y., Wang, R., Luo, S., and Feng, J. K. (2020). High-resolution 3-D shear wave velocity model of the Tibetan Plateau: implications for crustal deformation and porphyry Cu deposit formation. J. Geophys. Res. :Solid Earth, 125(7), e2019JB019215. https://doi.org/10.1029/2019JB019215

Jiang, G. Y., Xu, C. J., Wen, Y. M., Liu, Y., Yin, Z., and Wang, J. J. (2013). Inversion for coseismic slip distribution of the 2010 Mw 6.9 Yushu Earthquake from InSAR data using angular dislocations. Geophys. J. Int., 194(2), 1011–1022. https://doi.org/10.1093/gji/ggt141

Jónsson, S., Segall, P., Pedersen, R., and Björnsson, G. (2003). Post-earthquake ground movements correlated to pore-pressure transients. Nature, 424(6945), 179–183. https://doi.org/10.1038/nature01776

King, G. C. P., Stein, R. S., and Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bull. Seismol. Soc. Am., 84(3), 935–953.

Kirby, E., Harkins, N., Wang, E. Q., Shi, X. H., Fan, C., and Burbank, D. (2007). Slip rate gradients along the eastern Kunlun fault. Tectonics, 26(2), TC2010. https://doi.org/10.1029/2006TC002033

Laske, G., Masters, G., Ma, Z. T., and Pasyanos, M. (2013). Update on CRUST1.0-A 1-degree global model of Earth’s crust. In Geophysical Research Abstracts (Vol. 15, p. 2658). Vienna, Austria.222

Lasserre, C., Peltzer, G., Crampé, F., Klinger, Y., Van der Woerd, J., and Tapponnier, P. (2005). Coseismic deformation of the 2001 M w=7.8 Kokoxili earthquake in Tibet, measured by synthetic aperture radar interferometry. J. Geophys. Res. :Solid Earth, 110(B12408), 1–17. https://doi.org/10.1029/2004JB003500

Li, S. S., Wdowinski, S., Hsu, Y. J., and Shyu, J. B. H. (2020). Earthquake interactions in central Taiwan: Probing Coulomb stress effects due to ML ≥ 5.5 earthquakes from 1900 to 2017. J. Geophys. Res. :Solid Earth, 125(8), e2019JB019010. https://doi.org/10.1029/2019JB019010

Li, X., Xu, W. B., Jónsson, S., Klinger, Y., and Zhang, G. H. (2020). Source model of the 2014 MW 6.9 Yutian earthquake at the Southwestern End of the Altyn Tagh Fault in Tibet Estimated from Satellite Images. Seismol. Res. Lett., 91(6), 3161–3170. https://doi.org/10.1785/0220190361

Li, Y. J., Huang, L. Y., Ding, R., Yang, S. X., Liu, L., Zhang, S. M., and Liu, H. Q. (2021). Coulomb stress changes associated with the M7.3 Maduo earthquake and implications for seismic hazards. Nat. Hazard Res., 1(2), 95–101. https://doi.org/10.1016/j.nhres.2021.06.003

Li, Z. C., Ding, K. H., Zhang, P., Wen, Y. M., Zhao, L. J., and Chen, J. F. (2021). Co-seismic deformation and slip distribution of 2021 Mw 7.4 Madoi earthquake from GNSS observation. Geomat. Inf. Sci. Wuhan Univ., 46(10), 1489–1497. https://doi.org/10.13203/j.whugis20210301

Li, Z. M., Li, W. Q., Li, T., Xu, Y. R., Su, P., Guo, P., Sun, H. Y., Ha, G. H., Chen, G. H., … Dong, J. Y. (2021). Seismogenic fault and coseismic surface deformation of the Maduo MS 7.4 earthquake in Qinghai, China: A quick report. Seismol. Geol., 43(3), 722–737. https://doi.org/10.3969/j.issn.0253-4967.2021.03.016

Lin, A., and Guo, J. (2008). Nonuniform slip rate and millennial recurrence interval of large earthquakes along the eastern segment of the Kunlun fault, northern Tibet. Bull. Seismol. Soc. Am., 98(6), 2866–2878. https://doi.org/10.1785/0120070193

Liu, G., Xiong, W., Wang, Q., Qiao, X. J., Ding, K. H., Li, X. X., and Yang, S. M. (2019). Source characteristics of the 2017 Ms 7.0 Jiuzhaigou, China, earthquake and implications for recent seismicity in eastern Tibet. J. Geophys. Res.:Solid Earth, 124(5), 4895–4915. https://doi.org/10.1029/ 2018JB016340

Lozos, J. C., Oglesby, D. D., Duan, B., and Wesnousky, S. G. (2011). The effects of double fault bends on rupture propagation: A geometrical parameter study. Bull. Seismol. Soc. Am., 101(1), 385–398. https://doi.org/10.1785/0120100029

Marone, C. J., Scholtz, C. H., and Bilham, R. (1991). On the mechanics of earthquake afterslip. J. Geophys. Res. :Solid Earth, 96(B5), 8441–8452. https://doi.org/10.1029/91JB00275

Michel, R., Avouac, J. P., and Taboury, J. (1999). Measuring ground displacements from SAR amplitude images: Application to the Landers earthquake. Geophys. Res. Lett., 26(7), 875–878. https://doi.org/10. 1029/1999GL900138

Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am., 75(4), 1135–1154. https://doi.org/10.1785/BSSA0750041135

Pan, J. W., Bai, M. K., Li, C., Liu, F. C., Li, H. B., Liu, D. L., Chevalier, M., Wu, K. G., Wang, P., … Li, C. R. (2021). Coseismic surface rupture and seismogenic structure of the 2021-05-22 Maduo (Qinghai) Ms 7.4 earthquake. Acta Geol. Sin., 95(6), 1655–1670. https://doi.org/10.3969/j.issn.0001-5717.2021.06.001

Royden, L. H., Burchfiel, B. C., King, R. W., Wang, E., Chen, Z., Shen, F., and Liu, Y. (1997). Surface deformation and lower crustal flow in eastern Tibet. Science, 276(5313), 788–790. https://doi.org/10.1126/science.276.5313.788

Ryder, I., Parsons, B., Wright, T. J., and Funning, G. J. (2007). Post-seismic motion following the 1997 Manyi (Tibet) earthquake: InSAR observations and modelling. Geophys. J. Int., 169(3), 1009–1027. https://doi.org/10.1111/j.1365-246X.2006.03312.x

Sangha, S., Peltzer, G., Zhang, A. L., Meng, L. S., Liang, C. R., Lundgren, P., and Fielding, E. (2017). Fault geometry of 2015, MW 7.2 Murghab, Tajikistan earthquake controls rupture propagation: Insights from InSAR and seismological data. Earth Planet. Sci. Lett., 462, 132–141. https://doi.org/10.1016/j.jpgl.2017.01.018

Scholz, C. H. (1998). Earthquakes and friction laws. Nature, 391(6662), 37–42. https://doi.org/10.1038/34097

Shen, Z.-K., Wang, M., Zeng, Y H., and Wang, F. (2015). Optimal interpolation of spatially discretized geodetic data. Bull. Seismol. Soc. Am., 105(4), 2117–2127. https://doi.org/10.1785/0120140247

Socquet, A., Hollingsworth, J., Pathier, E., and Bouchon, M. (2019). Evidence of supershear during the 2018 magnitude 7.5 Palu earthquake from space geodesy. Nat. Geosci., 12(3), 192–199. https://doi.org/10.1038/s41561-018-0296-0

Sun, J. B., Yue, H., Shen, Z. K., Fang, L. H., Zhan, Y., and Sun, X. Y. (2018). The 2017 Jiuzhaigou earthquake: A complicated event occurred in a young fault system. Geophys. Res. Lett., 45(5), 2230–2240. https://doi.org/10.1002/2017GL076421

Tapponnier, P., Peltzer, G., Le Dain, A. Y., Armijo, R., and Cobbold, P. (1982). Propagating extrusion tectonics in Asia: New insights from simple experiments with plasticine. Geology, 10(12), 611–616. https://doi.org/10.1130/0091-7613(1982)10<611:PETIAN>2.0.CO;2

Van Der Woerd, J., Tapponnier, P., Ryerson, F. J., Meriaux, A. S., Meyer, B., Gaudemer, Y., Finkel, R. C., Caffee, M. W., Zhao, G. G., and Xu, Z. Q. (2002). Uniform postglacial slip-rate along the central 600 km of the Kunlun Fault (Tibet), from 26Al, 10Be, and 14C dating of riser offsets, and climatic origin of the regional morphology. Geophys. J. Int., 148(3), 356–388. https://doi.org/10.1046/j.1365-246x.2002.01556.x

Wang, M., and Shen, Z.-K. (2020). Present-day crustal deformation of continental China derived from GPS and its tectonic implications. J. Geophys. Res. :Solid Earth, 125(2), e2019JB018774. https://doi.org/10.1029/2019JB018774

Wang, Q., Qiao, X. J., Lan, Q. G., Freymueller, J., Yang, S. M., Xu, C. J., Yang, Y. L., You, X. Z., Tan, K., and Chen, G. (2011). Rupture of deep faults in the 2008 Wenchuan earthquake and uplift of the Longmen Shan. Nat. Geosci., 4(9), 634–640. https://doi.org/10.1038/ngeo1210

Wang, R. J., Lorenzo-Martín, F., and Roth, F. (2006). PSGRN/PSCMP—a new code for calculating co- and post-seismic deformation, geoid and gravity changes based on the viscoelastic-gravitational dislocation theory. Comput. Geosci., 32(4), 527–541. https://doi.org/10.1016/J.CAGEO.2005.08.006

Wang, S., Jiang, G. Y., Weingarten, M., and Niu, Y. F. (2020). InSAR evidence indicates a link between fluid injection for salt mining and the 2019 Changning (China) earthquake sequence. Geophys. Res. Lett.,, 47(16), e2020GL087603. https://doi.org/10.1029/2020GL087603

Wang, S., Xu, C. J., Wen, Y. M., Yin, Z., Jiang, G. Y., and Fang, L. H. (2017). Slip model for the 25 November 2016 Mw 6.6 Aketao earthquake, western China, revealed by Sentinel-1 and ALOS-2 observations. Remote Sens., 9(4), 325. https://doi.org/10.3390/rs9040325

Wang, S., Xu, W. B., Xu, C. J., Yin, Z., Bürgmann, R., Liu, L., and Jiang, G. Y. (2019). Changes in groundwater level possibly encourage shallow earthquakes in central Australia: The 2016 Petermann Ranges earthquake. Geophys. Res. Lett., 46(6), 3189–3198. https://doi.org/10.1029/2018GL080510

Wang, W. L., Fang, L. H., Wu, J. P., Tu, H. W., Chen, L. Y., Lai, G. J., and Zhang, L. (2021). Aftershock sequence relocation of the 2021 MS7.4 Maduo Earthquake, Qinghai, China. Sci. China Earth Sci., 64(8), 1371–1380. https://doi.org/10.1007/s11430-021-9803-3

Wegnüller, U. , Werner, C. , Strozzi, T. , Wiesmann, A. , Frey, O. , and Santoro, M. (2016). Sentinel-1 support in the GAMMA software. Procedia Comput. Sci, 100, 1305–1312. https://doi.org/https://doi.org/10.1016/j.procs.2016.09.246

Wen, X. Z., Yi, G. X., and Xu, X. W. (2007). Background and precursory seismicities along and surrounding the Kunlun fault before the Ms 8.1, 2001, Kokoxili earthquake, China. J. Asian Earth Sci., 30(1), 63–72. https://doi.org/10.1016/j.jseaes.2006.07.008

Wen, Y. M., Li, Z. H., Xu, C. J., Ryder, I., and Bürgmann, R. (2012). Postseismic motion after the 2001 Mw 7.8 Kokoxili earthquake in Tibet observed by InSAR time series. J. Geophys. Res. :Solid Earth, 117(B8), B08405.

Wessel, P., Smith, W. H. F., Scharroo, R., Luis, J., and Wobbe, F. (2013). Generic mapping tools: improved version released. Eos, Trans.AGU,94(45), 409–410. https://doi.org/10.1002/2013EO450001

Xu, X. W., Yu, G. H., Klinger, Y., Tapponnier, P., and Van Der Woerd, J. (2006). Reevaluation of surface rupture parameters and faulting segmentation of the 2001 Kunlunshan earthquake (Mw7.8), northern Tibetan Plateau, China. J. Geophys. Res. :Solid Earth, 111(B5), B05316. https://doi.org/10.1029/2004JB003488

Xu, X., Tong, X., Sandwell, D. T., Milliner, C. W., Dolan, J. F., Hollingsworth, J., Leprince, S., and Ayoub, F. (2016). Refining the shallow slip deficit. Geophys. J. Int., 204(3), 1867–1886.

Zhan, Y., Liang, M. J., Sun, X. Y., Huang, F. P., Zhao, L. Q., Gong, Y., Han, J., Li, C. X., Zhang, P. Z., and Zhang, H. P. (2021). Deep structure and seismogenic pattern of the 2021.5. 22 Madoi (Qinghai) Ms 7.4 earthquake. Chinese J. Geophys., 64(7), 2232–2252. https://doi.org/10.6038/cjg2021O0521

Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., … You, X. Z. (2004). Continuous deformation of the Tibetan Plateau from global positioning system data. Geology, 32(9), 809–812. https://doi.org/10.1130/G20554.1

Zhang, Y., Feng, W. P., Li, X. X., Liu, Y. J., Ning, J. Y., and Huang, Q. H. (2021). Joint inversion of rupture across a fault stepover during the 8 August 2017 Mw 6.5 Jiuzhaigou, China, earthquake. Seismol. Res. Lett, 92(6), 3386–3397. https://doi.org/10.1785/0220210084

Zhu, L. Y., Ji, L. Y., and Jiang, F. Y. (2020). Variations in locking along the east Kunlun fault, Tibetan Plateau, China, using GPS and leveling data. Pure Appl. Geophys., 177(1), 215–231. https://doi.org/10.1007/S00024-019-02231-2

Zhu, L. Y., Ji, L. Y., and Liu, C. J. (2021). Interseismic slip rate and locking along the Maqin–Maqu Segment of the East Kunlun Fault, Northern Tibetan Plateau, based on Sentinel-1 images. J. Asian Earth Sci., 211, 104703. https://doi.org/10.1016/J.JSEAES.2021.104703

Zhu, Y. G., Diao, F. Q., Fu, Y. C., Liu, C. L., and Xiong, X. (2021). Slip rate of the seismogenic fault of the 2021 Maduo earthquake in western China inferred from GPS observations. Sci. China Earth Sci., 64(8), 1363–1370. https://doi.org/10.1007/s11430-021-9808-0

[1]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[2]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[3]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[4]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[5]

Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029

[6]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[7]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[8]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[9]

QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu, 2022: Seismic attenuation compensation with spectral-shaping regularization, Earth and Planetary Physics, 6, 259-274. doi: 10.26464/epp2022024

[10]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[11]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[12]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[13]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[14]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[15]

Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047

[16]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[17]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[18]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

[19]

GuangXing Ding, JiaWei Li, XiaoXin Zhang, Fei He, LingPing He, KeFei Song, Liang Sun, Shuang Dai, ShiJie Liu, Bo Chen, Chao Yu, XiuQing Hu, SongYan Gu, ZhongDong Yang, Peng Zhang, 2021: Wide-field aurora imager onboard Fengyun satellite: Data products and validation, Earth and Planetary Physics, 5, 73-78. doi: 10.26464/epp2021003

[20]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data

Shuai Wang, Chuang Song, ShanShan Li, Xing Li