Citation:
Singh, D., and Uttam, S. (2022). Thermal inertia at the MSL and InSight mission sites on Mars. Earth Planet. Phys., 6(1), 18–27. http://doi.org/10.26464/epp2022004
2022, 6(1): 18-27. doi: 10.26464/epp2022004
Thermal inertia at the MSL and InSight mission sites on Mars
1. | Centre of Studies in Resources Engineering, Indian Institute of Technology Bombay, Mumbai, India |
2. | Physical Research Laboratory, Ahmedabad, India |
For planetary surface materials, thermal inertia is the critical property that governs the surface’s daily thermal response and controls diurnal and seasonal surface temperature variations. Here we use the ground measurements made by the MSL Curiosity rover and the InSight lander to determine the thermal inertia of two sites on Mars. This study compares the variation of thermal inertia during and after the Large Dust Storm (LDS) of Martian Year (MY) 34. To determine surface thermal inertia, we derive a simple approximation (using energy balance), which utilizes surface albedo, surface energy flux, and diurnal change in the surface temperature. The average thermal inertia in MY34 is about 39.2%, 3.7%, and 3.4% higher than MY35 average thermal inertia for the MSL, InSight (FOV1), and InSight (FOV2), respectively. Notably, the thermal inertia at the InSight (FOV1) is consistently lower by about 20 J·m–2·s–1/2·K–1 than the InSight (FOV2) site for all scenarios, indicating variation in the region’s surface composition. The best-fit surface albedo in MY34 (determined using the KRC model) are about 0.08, 0.05, and 0.03 higher than MY35 surface albedo for the MSL, InSight (FOV1), and InSight (FOV2), respectively. An increase in both surface albedo and thermal inertia during the LDS indicates that the underlying surface is both more thermally resistant and more reflective than the overlying loose dust.
Banerdt, W. B., Smrekar, S. E., Banfield, D., Giardini, D., Golombek, M., Johnson, C. L., Lognonné, P., Spiga, A., Spohn, T., … Wieczorek, M. (2020). Initial results from the InSight mission on Mars. Nat. Geosci., 13(3), 183–189. https://doi.org/10.1038/s41561-020-0544-y |
Banfield, D., Spiga, A., Newman, C., Forget, F., Lemmon, M., Lorenz, R., Murdoch, N., Viudez-Moreiras, D., Pla-Garcia, J., … Banerdt, W. B. (2020). The atmosphere of Mars as observed by InSight. Nat. Geosci., 13(3), 190–198. https://doi.org/10.1038/s41561-020-0534-0 |
Christensen, P., and Moore, H. J. (1992). The Martian surface layer. In H. H. Kieffer (Eds.), Mars, 44, 686–729. Tucson: University of Arizona Press, Space Science Series.222 |
Christensen, P. R., Bandfield, J. L., Hamilton, V. E., Ruff, S. W., Kieffer, H. H., Titus, T. N., Malin, M. C., Morris, R. V., Lane, M. D., … Greenfield, M. (2001). Mars Global Surveyor Thermal Emission Spectrometer experiment: Investigation description and surface science results. J. Geophys. Res.:Planets, 106(E10), 23823–23871. https://doi.org/10.1029/2000JE001370 |
Forget, F., Hourdin, F., and Talagrand, O. (1998). CO2 snowfall on Mars: Simulation with a general circulation model. Icarus, 131(2), 302–316. https://doi.org/10.1006/icar.1997.5874 |
Forget, F., Hourdin, F., Fournier, R., Hourdin, C., Talagrand, O., Collins, M., Lewis, S. R., Read, P. L., and Huot, J.-P. (1999). Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res.:Planets, 104(E10), 24155–24175. https://doi.org/10.1029/1999JE001025 |
Golombek, M., Warner, N. H., Grant, J. A., Hauber, E., Ansan, V., Weitz, C. M., Williams, N., Charalambous, C., Wilson, S. A., … Banerdt, W. B. (2020). Geology of the InSight landing site on Mars. Nat. Commun., 11(1), 1014. https://doi.org/10.1038/s41467-020-14679-1 |
Gómez-Elvira, J. , Armiens, C. , Castañer, L. , Domínguez, M. , Genzer, M. , Gómez, F. , Haberle, R. , Harri, A. -M. , Jiménez, V. , … Martín-Torres, J. (2012). REMS: The environmental sensor suite for the mars science laboratory rover. Space Sci. Rev., 170(1), 583–640. https://doi.org/10.1007/s11214-012-9921-1 |
Gómez-Elvira, J. (2013a). Mars Science Laboratory Rover Environmental Monitoring Station RDR Data V1.0, MSL-M-REMS-4-ENVEDR-V1.0. NASA Planet. Data Syst.222 |
Gómez-Elvira, J. (2013b). Mars Science Laboratory Rover Environmental Monitoring Station RDR Data V1.0, MSL-M-REMS-5-MODRDR-V1.0. NASA Planet. Data Syst.222 |
Guzewich, S. D., Lemmon, M., Smith, C. L., Martínez, G., de Vicente-Retortillo, Á., Newman, C. E., Baker, M., Campbell, C., Cooper, B., … Mier, M.-P. Z. (2019). Mars science laboratory observations of the 2018/Mars Year 34 global dust storm. Geophys. Res. Lett., 46(1), 71–79. https://doi.org/10.1029/2018GL080839 |
Haberle, R. M., Gómez-Elvira, J., de la Torre Juárez, M., Harri, A.-M., Hollingsworth, J. L., Kahanpää, H., Kahre, M. A., Lemmon, M., Martín-Torres, F. J., … Zorzano-Mier, M.-P. (2014). Preliminary interpretation of the REMS pressure data from the first 100 sols of the MSL mission. J. Geophys. Res.:Planets, 119(3), 440–453. https://doi.org/10.1002/2013JE004488 |
Hamilton, V. E., Vasavada, A. R., Sebastián, E., de la Torre Juárez, M., Ramos, M., Armiens, C., Arvidson, R. E., Carrasco, I., Christensen, P. R., … Zorzano, M.-P. (2014). Observations and preliminary science results from the first 100 sols of MSL Rover Environmental Monitoring Station ground temperature sensor measurements at Gale Crater. J. Geophys. Res.:Planets, 119(4), 745–770. https://doi.org/10.1002/2013JE004520 |
Hamm, M., Grott, M., Kührt, E., Pelivan, I., and Knollenberg, J. (2018). A method to derive surface thermophysical properties of asteroid (162173) Ryugu (1999JU3) from in-situ surface brightness temperature measurements. Planet. Space Sci., 159, 1–10. https://doi.org/10.1016/j.pss.2018.03.017 |
Jakosky, B. M. (1986). On the thermal properties of Martian fines. Icarus, 66(1), 117–124. https://doi.org/10.1016/0019-1035(86)90011-4 |
Jakosky, B. M., Mellon, M. T., Kieffer, H. H., Christensen, P. R., Varnes, E. S., and Lee, S. W. (2000). The thermal inertia of Mars from the Mars Global Surveyor Thermal Emission Spectrometer. J. Geophys. Res.:Planets, 105(E4), 9643–9652. https://doi.org/10.1029/1999JE001088 |
Kieffer, H. H. (2013). Thermal model for analysis of Mars infrared mapping. J. Geophys. Res.:Planets, 118(3), 451–470. https://doi.org/10.1029/2012JE004164 |
Kopp, E., Mueller, N., Grott, M., Walter, I., Knollenberg, J., Hanschke, F., Kessler, E., and Meyer, H.-G. (2016). HP3-RAD: A compact radiometer design with on-site calibration for in-situ exploration. In. Proceedings of the SPIE 9973 |
Lefèvre, F., Lebonnois, S., Montmessin, F., and Forget, F. (2004). Three-dimensional modeling of ozone on Mars. J. Geophys. Res.: Planets, 109(E7).222 |
Madeleine, J.-B., Forget, F., Millour, E., Montabone, L., and Wolff, M. J. (2011). Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res.: Planets, 116(E11).222 |
Martínez, G. M., Rennó, N., Fischer, E., Borlina, C. S., Hallet, B., de la Torre Juárez, M., Vasavada, A. R., Ramos, M., Hamilton, V., … Haberle, R. M. (2014). Surface energy budget and thermal inertia at Gale Crater: Calculations from ground-based measurements. J. Geophys. Res.:Planets, 119(8), 1822–1838. https://doi.org/10.1002/2014JE004618 |
Mellon, M. T., Jakosky, B. M., Kieffer, H. H., and Christensen, P. R. (2000). High-resolution thermal inertia mapping from the mars global surveyor thermal emission spectrometer. Icarus, 148(2), 437–455. https://doi.org/10.1006/icar.2000.6503 |
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., .. Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034 |
Montabone, L., Spiga, A., Kass, D. M., Kleinböhl, A., Forget, F., and Millour, E. (2020). Martian Year 34 column dust climatology from mars climate sounder observations: Reconstructed maps and model simulations. J. Geophys. Res.:Planets, 125(8), e2019JE006111. https://doi.org/10.1029/2019JE006111 |
Morgan, P., Grott, M., Knapmeyer-Endrun, B., Golombek, M., Delage, P., Lognonné, P., Piqueux, S., Daubar, I., Murdoch, N., … Kedar, S. (2018). A Pre-Landing Assessment of Regolith Properties at the InSight Landing Site. Space Sci. Rev., 214(6), 104. https://doi.org/10.1007/s11214-018-0537-y |
Mueller, N. T., Knollenberg, J., Grott, M., Kopp, E., Walter, I., Krause, C., Hudson, T., Spohn, T., and Smrekar, S. (2020). Calibration of the HP3 radiometer on InSight. Earth Space Sci., 7(5), e2020EA001086. https://doi.org/10.1029/2020EA001086 |
Navarro, T., Madeleine, J.-B., Forget, F., Spiga, A., Millour, E., Montmessin, F., and Määttänen, A. (2014). Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res.:Planets, 119(7), 1479–1495. https://doi.org/10.1002/2013JE004550 |
Parro, L. M., Jiménez-Díaz, A., Mansilla, F., and Ruiz, J. (2017). Present-day heat flow model of Mars. Sci. Rep., 7(1), 45629. https://doi.org/10.1038/srep45629 |
Pelkey, S. M., and Jakosky, B. M. (2002). Surficial geologic surveys of gale crater and melas chasma, mars: integration of remote-sensing data. Icarus, 160(2), 228–257. https://doi.org/10.1006/icar.2002.6978 |
Piqueux, S., Kopp, E., Spohn, T., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C., Plesa, A. C., Siegler, M., and Spiga, A. (2019). HP3 radiometermeasurements from the Mars mission insight.222 |
Pleskot, L. K., and Miner, E. D. (1981). Time variability of Martian bolometric albedo. Icarus, 45(1), 179–201. https://doi.org/10.1016/0019-1035(81)90013-0 |
Pottier, A., Forget, F., Montmessin, F., Navarro, T., Spiga, A., Millour, E., Szantai, A., and Madeleine, J.-B. (2017). Unraveling the martian water cycle with high-resolution global climate simulations. Icarus, 291, 82–106. https://doi.org/10.1016/j.icarus.2017.02.016 |
Putzig, N. E., Mellon, M. T., Kretke, K. A., and Arvidson, R. E. (2005). Global thermal inertia and surface properties of Mars from the MGS mapping mission. Icarus, 173(2), 325–341. https://doi.org/10.1016/j.icarus.2004.08.017 |
Putzig, N. E., and Mellon, M. T. (2007). Apparent thermal inertia and the surface heterogeneity of Mars. Icarus, 191(1), 68–94. https://doi.org/10.1016/j.icarus.2007.05.013 |
Savijärvi, H. I., Harri, A.-M., and Kemppinen, O. (2015). Mars Science Laboratory diurnal moisture observations and column simulations. J. Geophys. Res.:Planets, 120(5), 1011–1021. https://doi.org/10.1002/2014JE004732 |
Singh, D., Flanner, M. G., and Millour, E. (2018). Improvement of Mars surface snow albedo modeling in LMD Mars GCM with SNICAR. J. Geophys. Res.:Planets, 123(3), 780–791. https://doi.org/10.1002/2017JE005368 |
Singh, D. (2020). Impact of surface Albedo on Martian photochemistry. Earth Planet. Phys., 4(3), 206–211. https://doi.org/10.26464/epp2020025 |
Smith, D. E., Zuber, M. T., Solomon, S. C., Phillips, R. J., Head, J. W., Garvin, J. B., Banerdt, W. B., Muhleman, D. O., Pettengill, G. H., … Duxbury, T. C. (1999). The global topography of mars and implications for surface evolution. Science, 284(5419), 1495–1503. https://doi.org/10.1126/science.284.5419.1495 |
Spiga, A. , and Forget, F. (2009). A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results. J. Geophys. Res.: Planets, 114(E2).222 |
Spohn, T., Grott, M., Smrekar, S. E., Knollenberg, J., Hudson, T. L., Krause, C., Müller, N., Jänchen, J., Börner, A., … Banerdt, W. B. (2018). The heat flow and physical Properties Package (HP3) for the InSight mission. Space Sci. Rev., 214(5), 96. https://doi.org/10.1007/s11214-018-0531-4 |
Streeter, P. M., Lewis, S. R., Patel, M. R., Holmes, J. A., and Kass, D. M. (2020). Surface warming during the 2018/Mars Year 34 global dust storm. Geophys. Res. Lett., 47(9), e2019GL083936. https://doi.org/10.1029/2019GL083936 |
Tian, J., Su, H. B., He, H. L., and Sun, X. M. (2015). An empirical method of estimating soil thermal inertia. Adv. Meteorol., 2015, e428525. https://doi.org/10.1155/2015/428525 |
Vasavada, A. R., Piqueux, S., Lewis, K. W., Lemmon, M. T., and Smith, M. D. (2017). Thermophysical properties along Curiosity’s traverse in Gale crater, Mars, derived from the REMS ground temperature sensor. Icarus, 284, 372–386. https://doi.org/10.1016/j.icarus.2016.11.035 |
Viúdez-Moreiras, D., Newman, C. E., Forget, F., Lemmon, M., Banfield, D., Spiga, A., Lepinette, A., Rodriguez-Manfredi, J. A., Gómez-Elvira, J., … Grott, M. (2020). Effects of a large dust storm in the near-surface atmosphere as measured by insight in elysium planitia, mars. Comparison with contemporaneous measurements by Mars science laboratory. J. Geophys. Res.:Planets, |
Vu, T. H., Piqueux, S., Choukroun, M., Edwards, C. S., Christensen, P. R., and Glotch, T. D. (2019). Low-temperature specific heat capacity measurements and application to Mars thermal modeling. Icarus, 321, 824–840. https://doi.org/10.1016/j.icarus.2018.10.004 |
Wall, M. 2012. Touchdown! Huge NASA rover lands on Mars. Space. Com. https://www.space.com/16932-mars-rover-curiosity-landing-success.html222 |
Wang, J., Bras, R.L. , Sivandran, G., and Knox, R. G. (2010). A simple method for the estimation of thermal inertia. Geophys. Res. Lett., 37(5), L05404.222 |
Wolff, M. J., Smith, M. D., Clancy, R. T., Spanovich, N., Whitney, B. A., Lemmon, M. T., Bandfield, J. L., Banfield, D., Ghosh, A., … Squyres, S. W. (2006). Constraints on dust aerosols from the Mars exploration rovers using MGS overflights and Mini-TES. J. Geophys. Res.:Planets, 111(E12). https://doi.org/10.1029/2006JE002786 |
Wolff, M. J., Smith, M. D., Clancy, R. T., Arvidson, R., Kahre, M., Seelos, F., Murchie, S., and Savijärvi, H. (2009). Wavelength dependence of dust aerosol single scattering albedo as observed by the compact reconnaissance imaging spectrometer. J. Geophys. Res.: Planets, 114(E2).222 |
Wolff, M. J., Todd Clancy, R., Goguen, J. D., Malin, M. C., and Cantor, B. A. (2010). Ultraviolet dust aerosol properties as observed by MARCI. Icarus, 208(1), 143–155. https://doi.org/10.1016/j.icarus.2010.01.010 |
Zuber, M. T., Smith, D. E., Solomon, S. C., Muhleman, D. O., Head, J. W., Garvin, J. B., Abshire, J. B., and Bufton, J. L. (1992). The Mars observer laser altimeter investigation. J. Geophys. Res.:Planets, 97(E5), 7781–7797. https://doi.org/10.1029/92JE00341 |
[1] |
Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005 |
[2] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[3] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[4] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[5] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[6] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[7] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[8] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[9] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[10] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[11] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[12] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[13] |
Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062 |
[14] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[15] |
YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057 |
[16] |
JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038 |
[17] |
WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030 |
[18] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[19] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[20] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)