Citation:
Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Takahashi, H., Carrasco, A. J., Vital, L. F. R., Rezende, L. C. A., Egito, F., Rosa, G. M., and Sampaio, A. H. R. (2021). Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil. Earth Planet. Phys., 5(5), 397–406. http://doi.org/10.26464/epp2021045
2021, 5(5): 397-406. doi: 10.26464/epp2021045
Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil
1. | Space Weather Division, National Institute for Space Research (INPE), São José dos Campos, Brazil |
2. | University of Los Andes (ULA), Mérida, Venezuela |
3. | State Key Laboratory of Space Weather, Beijing 100190, China |
4. | Federal University of Campina Grande (UFCG), Campina Grande, Brazil |
5. | Federal Institute for Education, Science and Technology Baiano (IF Baiano), Bom Jesus da Lapa, Brazil |
OI 630.0 nm airglow observations, from a new observatory at Bom Jesus de Lapa, were used to study the interaction between EPBs (Equatorial Plasma Bubbles) and the MSTID (Medium-Scale Traveling Ionospheric Disturbance) over the Northeast region in Brazil. On the night of September 16 to 17, 2020, an EPB was observed propagating eastward, in an apparent fossil stage, until it interacted with a dark band electrified MSTID (eMSTID). After the interaction, four EPBs merged, followed by an abrupt southward development and bifurcations. Analysis of the data suggests that an eastward polarization electric field, induced by the dark band eMSTID, forced the EPB into an upward drift, growing latitudinally along the magnetic field lines and then bifurcating.
Aa, E., Zou, S., Ridley, A., Zhang, S. R., Coster, A. J., Erickson, P. J., Liu S. Q., and Ren, J. E. (2019). Merging of storm time midlatitude traveling ionospheric disturbances and equatorial plasma bubbles. Space Weather, 17, 285–298. https://doi.org/10.1029/2018SW002101 |
Abdu, M. A. (2001). Outstanding problems in the equatorial ionosphere–thermosphere electrodynamics relevant to spread F. Journal of Atmospheric and Solar-Terrestrial Physics, 63(9), 869–884. https://doi.org/10.1016/S1364-6826(00)00201-7 |
Abdu, M. A., Batista, I. S., and Bittencout, J. A. (1981). Some characteristics of equatorial spread F at the magnetic equatorial station Fortaleza. Journal of Geophysical Research: Space Physics, 86(A8), 6836–6842. https://doi.org/10.1029/JA086iA08p06836 |
Abdu, M. A., Medeiros, R. T., Sobral, J. H. A., and Bittencourt, J. A. (1983). Spread F Plasma bubble vertical rise velocities determined from space ionosonde observations. Journal of Geophysical Research: Space Physics, 88(A11), 9197–9204. https://doi.org/10.1029/JA088iA11p09197 |
Abdu, M. A., Batista, I. S., Reinisch, B. W., Souza, J. R. de, Sobral, J. H. A., Pedersen, T. R., Medeiros, A. F., Schuch, N. J., Paula, E. R. de, and Groves, K. M. (2009). Conjugate Point Equatorial Experiment (COPEX) campaign in Brazil: Electrodynamics highlights on spread F development conditions and day-to-day variability. Journal of Geophysical Research, 114(A4), A04308. https://doi.org/10.1029/2008JA013749 |
Aggson, T. L., Laakso, H., Maynard, N. C., and Pfaff, R. F. (1996). In situ observations of bifurcation of equatorial ionospheric plasma depletions. Journal of Geophysical Research, 101(A3), 5125–5132. https://doi.org/10.1029/95JA03837 |
Amorim, D. C. M., Pimenta, A. A., Bittencourt, J. A., and Fagundes, P. R. (2011). Long term study of medium-scale traveling ionospheric disturbances using oi 630 nm All-Sky imaging and ionosonde over Brazilian low latitudes. Journal of Geophysical Research, 116, A06312. https://doi.org/10.1029/2010JA016090 |
Barros, D., Takahashi, H., Wrasse, C. M., and Figueiredo, C. A. O. B. (2018). Characteristics of equatorial plasma bubbles observed by TEC map based on ground-based GNSS receivers over South America. Annales Geophysicae, 36(1), 91–100. https://doi.org/10.5194/angeo-36-91-2018 |
Batista, I. S., Abdu, M. A., and Bittencourt, J. A. (1986). Equatorial F region vertical plasma drifts: Seasonal and longitudinal asymmetries in the American sector. Journal of Geophysical Research, 91, 12,055–12,064. https://doi.org/10.1029/JA091iA11p12055 |
Carrasco, A. J., Pimenta, A. A., Wrasse, C. M., Batista, I. S., and Takahashi, H. (2020). Why do equatorial plasma bubbles bifurcate?. Journal of Geophysical Research: Space Physics, 125, e2020JA028609. https://doi.org/10.1029/2020JA028609 |
Carrasco, A. J., Batista, I. S., Sobral, J. H. A., and Abdu, M. A. (2017). Spread F modeling over Brazil. Journal of Atmospheric and Solar-Terrestrial Physics, 161, 98–104. https://doi.org/10.1016/j.jastp.2017.06.015 |
Cosgrove, R. B., and Tsunoda, R. T. (2004). Instability of the E-F coupled nighttime midlatitude ionosphere. Journal of Geophysical Research, 109, A04305. https://doi.org/10.1029/2003JA010243 |
Cherniak, I., and Zakharenkova, I. (2016). First observations of super plasma bubbles in Europe. Geophysical Research Letters, 43, 11,137–11,145. https://doi.org/10.1002/2016GL071421 |
Figueiredo, C. A. O. B., Takahashi, H., Wrasse, C. M., Otsuka, Y., Shiokawa, K., and Barros, D. (2018). Investigation of nighttime MSTIDS observed by optical thermosphere imagers at low latitudes: Morphology, propagation direction, and wind filtering. Journal of Geophysical Research: Space Physics, 123, 7843–7857. https://doi.org/10.1029/2018JA025438 |
Fukushima, D., Shiokawa, K., Otsuka, Y., and Ogawa, T. (2012). Observation of equatorial nighttime medium-scale traveling ionospheric disturbances in 630-nm airglow images over 7 years. Journal of Geophysical Research, 117(A10324). https://doi.org/10.1029/2012JA017758 |
Haerendel, G. (1973). Theory of equatorial spread-F, Report Max-Planck Institute.222 |
Haerendel, G., Eccles, J. V., and Çakir, S. (1992). Theory for modelling the equatorial evening ionosphere and the origin of the shear in the horizontal plasma flow. Journal of Geophysical Research: Space Physics, 97, 1209–1223. https://doi.org/10.1029/91JA02226 |
Heelis, R. A., Kendall, P. C., Moffett, R. J., Windle, D. W., and Rishbeth, H. (1974). Electrical coupling of the E- and F- regions and its effect on F-region drifts and winds. Planetary and Space Science, 22(5), 743–756. https://doi.org/10.1016/0032-0633(74)90144-5 |
Huang, C. S., and Kelley, M. C. (1996). Nonlinear evolution of equatorial spread F: Gravity wave seeding of Rayleigh-Taylor instability. Journal of Geophysical Research: Space Physics, 101, 293–302. https://doi.org/10.1029/95JA02210 |
Huang, C.S., Foster, J. C. and Sahai, Y. (2007). Significant depletions of the ionospheric plasma density at middle latitudes: A possible signature of equatorial spread F bubbles near the plasmapause. Journal of Geophysical Research: Space Physics., 112, A05315. https://doi.org/10.1029/2007JA012307 |
Huang, X., and Reinisch, B. W. (1996). Vertical electron density profiles from the Digisonde network. Advances in Space Research, 18(6), 121–129. https://doi.org/10.1016/0273-1177(95)00912-4 |
Huang, X., and Reinisch, B. W. (2001). Vertical electron content from ionograms in real time. Radio Science, 36(2), 335–342. https://doi.org/10.1029/1999RS002409 |
Hysell, D. L. (1999). Imaging coherent backscatter radar studies of equatorial spread F. Journal of Atmospheric and Solar‐Terrestrial Physics, 61, 701–716. https://doi.org/10.1016/S1364-6826(99)00020-6 |
Jakowski, N., Tsybulyal K., Stankov S.M., and Wehrenpfennig, A. (2005). About the Potential of GPS Radio Occultation Measurements for Exploring the Ionosphere. In: Reigber C., Lühr H., Schwintzer P., Wickert J. (eds). Earth Observation with CHAMP. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-26800-6_69222 |
Katamzi-Joseph, Z. T., Habarulema, J. B., and Hernández-Pajares, M. (2017). Midlatitude postsunset plasmabubbles observed over Europeduring intense storms in April2000 and 2001. Space Weather, 15, 1177–1190. https://doi.org/10.1002/2017SW001674 |
Kelley, M. C. (2009). The Earth’s Ionosphere. Elsevier.222 |
Kelley, M. C., and Miller, C. A. (1997). Electrodynamics of midlatitude spread F: 3. Electrohydrodynamic waves? A new look at the role of electric fields in thermospheric wave dynamics. Journal of Geophysical Research: Space Physics, 102(A6), 11,539–11, 547. https://doi.org/10.1029/96JA03841 |
Krall, J., Huba, J. D., Ossakow, S. L., Joyce, G., Makela, J. J., Miller, E. S., and Kelley, M. C. (2011). Modeling of equatorial plasma bubbles triggered by non-equatorial traveling ionospheric disturbances. Geophysical Research Letters, 38(8), L08103. https://doi.org/10.1029/2011GL046890 |
Li, G. Z., Ning, B. Q., Wang, C., Abdu, M. A., Otsuka, Y., Yamamoto, M., Wu, J., Chen, J. S. (2018). Storm-enhanced development of postsunset equatorial plasma bubbles around the meridian 120°E/60°W on 7–8 September 2017. Journal of Geophysical Research: Space Physics, 123, 7985–7998. https://doi.org/10.1029/2018JA025871 |
Li, W., Huang, L., Zhang, S., and Chai, Y. (2019). Assessing Global Ionosphere TEC Maps with Satellite Altimetry and Ionospheric Radio Occultation Observations. Sensors, 19(24), 5489. https://doi.org/10.3390/s19245489 |
McDonald, B. E., Ossakow, S. L., Zalesak, S. T., and Zabusky, N. J. (1981). Scale sizes and lifetimes of F region plasma cloud striations as determined by the condition of marginal stability. Journal of Geophysical Research: Space Physics, 86(A7), 5775–5784. https://doi.org/10.1029/JA086iA07p05775 |
Miller, C. A., Swartz, W. E., Kelley, M. C., Mendillo, M., Nottingham, D., Scali, J., and Reinisch, B. (1997). Electrodynamics of midlatitude spread F: 1. Observations of unstable, gravity wave-induced ionospheric electric fields at tropical latitudes. Journal of Geophysical Research: Space Physics, 102(A6), 11,521–11,532. https://doi.org/10.1029/96JA03839 |
Narayanan, V. L., Gurubaran, S., Shiokawa, K., and Emperumal, K. (2016a). Shrinking equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 121(7), 6924–6935. https://doi.org/10.1002/2016JA022633 |
Narayanan, V. L., Gurubaran, S., and Shiokawa, K. (2016b). Direct observational evidence for the merging of equatorial plasma bubbles. Journal of Geophysical Research: Space Physics, 121, 7923–7931. https://doi.org/10.1002/2016JA022861 |
Otsuka, Y., Onoma, F., Shiokawa, K., Ogawa, T., Yamamoto, M., and Fukao, S. (2007). Simultaneous observations of nighttime medium-scale traveling ionospheric disturbances and e region field-aligned irregularities at midlatitude. Journal of Geophysical Research, 112, A06317. https://doi.org/10.1029/2005JA011548 |
Otsuka, Y., Shiokawa, K., Ogawa, T., and Wilkinson, P. (2002). Geomagnetic conjugate observations of equatorial airglow depletions. Geophysical Research Letters, 29(15), 43.1–4. https://doi.org/10.1029/2002GL015347 |
Otsuka, Y., Shiokawa, K., and Ogawa, T. (2012). Disappearance of equatorial plasma bubble after interaction with mid-latitude medium-scale traveling ionospheric disturbance. Geophysical Research Letters, 39(14), L14105. https://doi.org/10.1029/2012GL052286 |
Pimenta, A. A., Bittencourt, J., Fagundes, P., Sahai, Y., Buriti, R., Takahashi, H., and Taylor, M. J. (2003). Ionospheric plasma bubble zonal drifts over the tropical region: a study using OI 630nm emission all-sky images. Journal of Atmospheric and Solar-Terrestrial Physics, 65(10), 1117–1126. https://doi.org/10.1016/S1364-6826(03)00149-4 |
Reinisch, B. W., Haines, D. M., Bibl, K., Galkin, I., Huang, X., Kitrosser, D. F., Sales, G. S., and Scali, J. L. (1997). Ionospheric sounding support of OTH radar. Radio Science, 32(4), 1681–1694. https://doi.org/10.1029/97RS00841 |
Reinisch, B. W., and Huang, X. (1983). Automatic calculation of electron density profiles from digital ionograms: 3. Processing of bottomside ionograms. Radio Science, 18(4), 477–492. https://doi.org/10.1029/RS018i003p00477 |
Resende, L. C. A., Denardini, C. M., Picanço, G. A. S., Moro, J., Barros, D., Figueiredo, C. A. O. B., and Silva, R. P. (2019). On developing a new ionospheric plasma index for Brazilian equatorial F region irregularities. Ann. Geophys., 37, 807–818. https://doi.org/10.5194/angeo-37-807-2019 |
Sivakandan, M., Chakrabarty, D., Ramkumar, T. K., Guharay, A., Taori, A., and Parihar, N. (2019). Evidence for deep ingression of the midlatitude MSTID into as low as ~3.5° magnetic latitude. Journal of Geophysical Research: Space Physics, 124, 749–764. https://doi.org/10.1029/2018JA026103 |
Sobral, J. H. A., Abdu, M. A., Batista, I. S., Zamlutti, C. J., and Borba, G. L. (1981). Wave disturbances in the low latitude ionosphere and equatorial ionospheric plasma depletions. Journal of Geophysical Research, 86(A3), 1374–1378. https://doi.org/10.1029/JA086iA03p01374 |
Shiokawa, K., Otsuka, Y., Lynn, K. J. W., Wilkinson, P., and Tsugawa, T. (2015). Airglow-imaging observation of plasma bubble disappearance at geomagnetically conjugate points. Earth Planets Space, 67(43), 1–12. https://doi.org/10.1186/s40623-015-0202-6 |
Sobral, J. H. A., Abdu, M. A., Pedersen, T. R. , Vivian M. Castilho, V. M., Arruda, D. C. S., Muella, M. T. A. H., Batista, I. S., Mascarenhas, M., Paula, E. R. de, … Bertoni, F. C. P. (2009). Ionospheric zonal velocities at conjugate points over Brazil during the Copex campaign: Experimental observations and theoretical validations. Journal of Geophysical Research: Space Physics, 114(A4), A04309. https://doi.org/10.1029/2008JA013896 |
Sun, Y.Y., Liu, J.Y., Tsai, H. F., and Krankowski, A. (2017). Global ionosphere map constructed by using total electron content from ground-based GNSS receiver and FORMOSAT-3/COSMIC GPS occultation experiment. GPS Solut, 21, 1583–1591. https://doi.org/10.1007/s10291-017-0635-4 |
Takahashi, H., Wrasse, C. M., Denardini, C. M., Pádua, M. B., Paula, E. R. de, Costa, S. M. A., Otsuka, Y., Shiokawa, K., Galera Monico, J. F., Ivo, A., Sant'Anna, N. (2016). Ionospheric TEC weather map over South America. Space Weather, 14(11), 937–949. https://doi.org/10.1002/2016SW001474 |
Takahashi, H., Wrasse, C. M., Figueiredo, C. A. O. B., Barros, D., Abdu, M. A., Otsuka , Y., and Shiokawa, K. (2018). Equatorial plasma bubble seeding by MSTIDs in the ionosphere. Prog Earth Planet Sci., 5, 32. https://doi.org/10.1186/s40645-018-0189-2 |
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., … Zvereva T. (2015). International geomagnetic reference field: The 12th generation. Earth, Planets and Space, 67(1), 79–91. https://doi.org/10.1186/s40623-015-0228-9 |
Tsunoda, R. T., Saito, S., and Nguyen, T. T. (2018). Post-sunset rise of equatorial F layer — or upwelling growth?. Prog Earth Planet Sci., 5, 22. https://doi.org/10.1186/s40645-018-0179-4 |
Wrasse, C. M, Takahashi, H., Medeiros, A. F., Lima, L. M., Taylor, M. J, Gobbi, D., and Fechine, J. (2007). Determinação dos parâmetros de ondas de gravidade através da análise espectral de imagens de aeroluminescência. Revista Brasileira de Geofísica, 25(3), 257–265. https://doi.org/10.1590/S0102-261X2007000300003 |
Yokoyama, T., and Hysell, D. L. (2010). A new midlatitude ionosphere electrodynamics coupling model (MIECO): Latitudinal dependence and propagation of medium-scale traveling ionospheric disturbances. Geophysical Research Letters, 37(8), L08105. https://doi.org/10.1029/2010GL042598 |
Yokoyama, T., Hysell, D. L., Otsuka, Y., and Yamamoto, M. (2009). Three-dimensional simulation of the coupled Perkins and Es-layer instabilities in the nighttime midlatitude ionosphere. Journal of Geophysical Research, 114(A3), A03308. https://doi.org/10.1029/2008JA013789 |
Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. Journal of Geophysical Research: Space Physics, 119(10), 10474–10482. https://doi.org/10.1002/2014JA020708 |
Yue, X., Schreiner, W. S., Pedatella, N., Anthes, R. A., Mannucci, A. J., Straus, P. R., and Liu, J.-Y. (2014). Space weather observations by GNSS radio occultation: From FORMOSAT-3/COSMIC to FORMOSAT-7/COSMIC-2. Space Weather, 12(11), 616–621. https://doi.org/10.1002/2014SW001133 |
Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: The effect of neutral winds and background Pedersen conductivity. Journal of Atmospheric and Terrestrial Physics, 77(A1), 151–166. https://doi.org/10.1029/JA087iA01p00151 |
[1] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[2] |
Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042 |
[3] |
K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039 |
[4] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[5] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[6] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
[7] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[8] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[9] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[10] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
[11] |
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002 |
[12] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[13] |
QianQian Han, Markus Fraenz, Yong Wei, Eduard Dubinin, Jun Cui, LiHui Chai, ZhaoJin Rong, WeiXing Wan, Yoshifumi Futaana, 2020: EUV-dependence of Venusian dayside ionopause altitude: VEX and PVO observations, Earth and Planetary Physics, 4, 73-81. doi: 10.26464/epp2020011 |
[14] |
Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050 |
[15] |
FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043 |
[16] |
Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044 |
[17] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
[18] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[19] |
JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024 |
[20] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)