Citation:
Cesaroni, C., Spogli, L., Franceschi, G. D., Damaceno, J. G., Grzesiak, M., Vani, B., Monico, J. F. G., Romano, V., Alfonsi L., and Cafaro, M. (2021). A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes. Earth Planet. Phys., 5(5), 450–461. http://doi.org/10.26464/epp2021042
2021, 5(5): 450-461. doi: 10.26464/epp2021042
A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes
1. | Istituto Nazionale di Geofisica e Vulcanologia, Italy |
2. | SpacEarth Technology, Italy |
3. | Space Research Centre of the Polish Academy of Sciences, Poland |
4. | Instituto Federal de Educação, Ciência e Tecnologia de São Paulo, Brazil |
5. | Universidade Estadual Paulista “Júlio de Mesquita Filho”, Brazil |
6. | University of Salento, Italy |
We estimate the zonal drift velocity of small-scale ionospheric irregularities at low latitude by leveraging the spaced-receivers technique applied to two GNSS receivers for scintillation monitoring installed along the magnetic parallel passing in Presidente Prudente (Brazil, magnetic latitude 12.8°S). The investigated ionospheric sector is ideal to study small-scale irregularities, being located close to the expected position of the southern crest of the equatorial ionospheric anomaly. The measurement campaign took place between September 2013 and February 2014, i.e. equinox and summer solstice seasons under solar maximum, during which the probability of formation of small-scale irregularities is expected to maximize. We found that the hourly average of the velocity increases up to 135 m/s right after the local sunset at ionospheric altitudes and then smoothly decreases in the next hours. Such measurements are in agreement with independent estimations of the velocity made by the Incoherent Scatter Radar located at the Jicamarca Radio Observatory (magnetic latitude 0.1°N), by the Boa Vista Ionosonde (magnetic latitude 12.0°N), and by applying a recently-developed empirical regional short-term forecasting model. Additionally, we investigated the relationship with the percentage occurrence of amplitude scintillation; we report that it is exponentially dependent on the zonal velocity of the irregularities that cause it.
Abdu, M. A., Batista, I. S., Carrasco, A. J., and Brum, C. G. M. (2005). South Atlantic magnetic anomaly ionization: A review and a new focus on electrodynamic effects in the equatorial ionosphere. J. Atmos. Sol.-Terr. Phys., 67(17-18), 1643–1657. https://doi.org/10.1016/j.jastp.2005.01.014 |
Balan, N., Liu, L. B., and Le, H. J. (2018). A brief review of equatorial ionization anomaly and ionospheric irregularities. Earth Planet. Phys., 2(4), 257–275. https://doi.org/10.26464/epp2018025 |
Basu, S., Kudeki, E., Basu, S., Valladares, C. E., Weber, E. J., Zengingonul, H. P., Bhattacharyya, S., Sheehan, R., Meriwether, J. W., .. Espinoza, J. (1996). Scintillations, plasma drifts, and neutral winds in the equatorial ionosphere after sunset. J. Geophys. Res. Space Phys., 101(A12), 26795–26809. https://doi.org/10.1029/96JA00760 |
Bhattacharyya, A., Basu, S., Groves, K. M., Valladares, C. E., and Sheehan, R. (2001). Dynamics of equatorial F region irregularities from spaced receiver scintillation observations. Geophys. Res. Lett., 28(1), 119–122. https://doi.org/10.1029/2000GL012288 |
Bougard, B., Sleewaegen, J. M., Spogli, L., Veettil, S. V., and Monico, J. F. (2011). CIGALA: Challenging the solar maximum in Brazil with PolaRxS. In Proceedings of the 24th International Technical Meeting of the Satellite Division of the Institute of Navigation (ION GNSS 2011) (pp. 2572-2579). Portland: ION.222 |
Cesaroni, C., Spogli, L., Alfonsi, L., De Franceschi, G., Ciraolo, L., Monico, J. F. G., Scotto, C., Romano, V., Aquino, M., and Bougard, B. (2015). L-band scintillations and calibrated total electron content gradients over Brazil during the last solar maximum. J. Space Wea. Space Climate, 5, A36. https://doi.org/10.1051/swsc/2015038 |
Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A., and Radicella, S. M. (2007). Calibration errors on experimental slant total electron content (TEC) determined with GPS. J. Geod., 81(2), 111–120. https://doi.org/10.1007/s00190-006-0093-1 |
Costa, E., Fougere, P. F., and Basu, S. (1988). Cross-correlation analysis and interpretation of spaced-receiver measurements. Radio Sci., 23(2), 141–162. https://doi.org/10.1029/RS023i002p00141 |
Damaceno, J. G., Cesaroni, C., Grzesiak, M., Cafaro, M., and De Franceschi, G. (2019). Improved version of a short-term forecasting model to predict the total electron content over Brazil. In AGU Fall Meeting 2019. AGU.222 |
Damaceno, J. G., Bolmgren, K., Bruno, J., De Franceschi, G., Mitchell, C., and Cafaro, M. (2020). GPS loss of lock statistics over Brazil during the 24th solar cycle. Adv. Space Res., 66(2), 219–225. https://doi.org/10.1016/j.asr.2020.03.041 |
De Paula, E. R., Kantor, I. J., Sobral, J. H. A., Takahashi, H., Santana, D. C., Gobbi, D., de Medeiros, A. F., Limiro, L. A. T., Kil, H., .. Taylor, M. J. (2002). Ionospheric irregularity zonal velocities over Cachoeira Paulista. J. Atmos. Sol.-Terr. Phys., 64(12-14), 1511–1516. https://doi.org/10.1016/S1364-6826(02)00088-3 |
De Franceschi, G., Spogli, L., Alfonsi, L., Romano, V., Cesaroni, C., and Hunstad, I. (2019). The ionospheric irregularities climatology over Svalbard from solar cycle 23. Sci. Rep., 9(1), 9232. https://doi.org/10.1038/S41598-019-44829-5 |
Fejer, B. G., Souza, J. R., Santos, A. S., and Costa Pereira, A. E. (2005). Climatology of F region zonal plasma drifts over Jicamarca. J. Geophys. Res.: Space Phys., 110(A12), A12310. https://doi.org/10.1029/2005JA011324 |
Fejer, B. G. (2011). Low latitude ionospheric electrodynamics. Space Sci. Rev., 158(1), 145–166. https://doi.org/10.1007/s11214-010-9690-7 |
Fremouw, E. J., Leadabrand, R. L., Livingston, R. C., Cousins, M. D., Rino, C. L., Fair, B. C., and Long, R. A. (1978). Early results from the DNA Wideband satellite experiment—Complex-signal scintillation. Radio Sci., 13(1), 167–187. https://doi.org/10.1029/RS013i001p00167 |
Ghobadi, H., Spogli, L., Alfonsi, L., Cesaroni, C., Cicone, A., Linty, N., .. Cafaro, M. (2020). Disentangling ionospheric refraction and diffraction effects in GNSS raw phase through fast iterative filtering technique. GPS Solutions, 24(3), 1–13. |
Grzesiak, M., Cesaroni, C., Spogli, L., De Franceschi, G., and Romano, V. (2018). Regional short-term forecasting of ionospheric TEC and scintillation. Radio Sci., 53(10), 1254–1268. https://doi.org/10.1029/2017RS006310 |
Huang, C. S., and Hairston, M. R. (2015). The postsunset vertical plasma drift and its effects on the generation of equatorial plasma bubbles observed by the C/NOFS satellite. J. Geophys. Res.: Space Phys., 120(3), 2263–2275. https://doi.org/10.1002/2014JA020735 |
Kil, H., Kintner, P. M., de Paula, E. R., and Kantor, I. J. (2000). Global Positioning System measurements of the ionospheric zonal apparent velocity at Cachoeira Paulista in Brazil. J. Geophys. Res. Space Phys., 105(A3), 5317–5327. https://doi.org/10.1029/1999JA000244 |
Kintner, P. M., Ledvina, B. M., De Paula, E. R., and Kantor, I. J. (2004). Size, shape, orientation, speed, and duration of GPS equatorial anomaly scintillations. Radio Sci., 39(2), RS2012. https://doi.org/10.1029/2003RS002878 |
Ledvina, B. M., Kintner, P. M., and De Paula, E. R. (2004). Understanding spaced-receiver zonal velocity estimation. J. Geophys. Res. Space Phys., 109(A10), A10306. https://doi.org/10.1029/2004JA010489 |
Li, G. Z., Ning, B. Q., Otsuka, Y., Abdu, M. A., Abadi, P., Liu, Z. Z., Spogli, L., and Wan, W. X. (2020). Challenges to equatorial plasma bubble and ionospheric scintillation short-term forecasting and future aspects in east and southeast Asia. Surv. Geophys., 42, 201–238. https://doi.org/10.1007/s10712-020-09613-5 |
Linty, N., Farasin, A., Favenza, A., and Dovis, F. (2018). Detection of GNSS ionospheric scintillations based on machine learning decision tree. IEEE Trans. Aerosp. Electron. Syst., 55(1), 303–317. https://doi.org/10.1109/TAES.2018.2850385 |
Morton, Y. J., Yang, Z., Breitsch, B., Bourne, H., and Rino, C. (2020). Ionospheric effects, monitoring, and mitigation techniques. In Y. T. Jade Morton, et al. (Eds.), Position, Navigation, and Timing Technologies in the 21st Century: Integrated Satellite Navigation, Sensor Systems, and Civil Applications (pp. 879-937). IEEE.222 |
Muella, M. T. A. H., de Paula, E. R., Kantor, I. J., Batista, I. S., Sobral, J. H. A., Abdu, M. A., Kintner, P. M., Groves, K., M., and Smorigo, P. F. (2008). GPS L-band scintillations and ionospheric irregularity zonal drifts inferred at equatorial and low-latitude regions. J. Atmos. Sol.-Terr. Phys., 70(10), 1261–1272. https://doi.org/10.1016/j.jastp.2008.03.013 |
Muella, M. T. A. H., de Paula, E. R., Kantor, I. J., Rezende, L. F. C., and Smorigo, P. F. (2009). Occurrence and zonal drifts of small-scale ionospheric irregularities over an equatorial station during solar maximum-Magnetic quiet and disturbed conditions. Adv. Space Res., 43(12), 1957–1973. https://doi.org/10.1016/j.asr.2009.03.017 |
Muella, M. T. A. H., de Paula, E. R., and Monteiro, A. A. (2013). Ionospheric scintillation and dynamics of fresnel-scale irregularities in the inner region of the equatorial ionization anomaly. Surv. Geophys., 34(2), 233–251. https://doi.org/10.1007/s10712-012-9212-0 |
Muella, M. T. A. H., de Paula, E. R., and Jonah, O. F. (2014). GPS L1-frequency observations of equatorial scintillations and irregularity zonal velocities. Surv. Geophys., 35(2), 335–357. https://doi.org/10.1007/s10712-013-9252-0 |
Muella, M. T. A. H., Duarte-Silva, M. H., Moraes, A. O., de Paula, E. R., de Rezende, L. F. C., Alfonsi, L., and Affonso, B. J. (2017). Climatology and modeling of ionospheric scintillations and irregularity zonal drifts at the equatorial anomaly crest region. Ann. Geophys., 35(6), 1201–1218. https://doi.org/10.5194/angeo-35-1201-2017 |
Olla, A., Abadi, P., and Srigutomo, W. (2020). Investigation of the latitudinal occurrence rate of ionospheric plasma bubble in case of strong and weak pre–reversal enhancement in Southeast Asia. J. Phys.: Conf. Ser., 1523, 012024. https://doi.org/10.1088/1742-6596/1523/1/012024 |
Otsuka, Y., Shiokawa, K., and Ogawa, T. (2006). Equatorial ionospheric scintillations and zonal irregularity drifts observed with closely-spaced GPS receivers in Indonesia. J. Meteor. Soc. Japan, 84A, 343–351. https://doi.org/10.2151/jmsj.84A.343 |
Otsuka, Y. (2018). Review of the generation mechanisms of post-midnight irregularities in the equatorial and low-latitude ionosphere. Prog. Earth Planet. Sci., 5(1), 57. https://doi.org/10.1186/s40645-018-0212-7 |
Park, J., Sreeja, V., Aquino, M., Cesaroni, C., Spogli, L., Dodson, A., and De Franceschi, G. (2016). Performance of ionospheric maps in support of long baseline GNSS kinematic positioning at low latitudes. Radio Sci., 51(5), 429–442. https://doi.org/10.1002/2015RS005933 |
Reinisch, B. W., and Galkin, I. A. (2011). Global Ionospheric Radio Observatory (GIRO). Earth, Planets Space, 63(4), 377–381. https://doi.org/10.5047/EPS.2011.03.001 |
Saito, S., Maruyama, T., Ishii, M., Kubota, M., Ma, G. Y., Chen, Y. H., Li, J. H., Ha Duyen, C., and Le Truong, T. (2008). Observations of small-to large-scale ionospheric irregularities associated with plasma bubbles with a transequatorial HF propagation experiment and spaced GPS receivers. J. Geophys. Res.: Space Phys., 113(A12), A12313. https://doi.org/10.1029/2008JA013149 |
Sobral, J. H. A., Abdu, M. A., Pedersen, T. R., Castilho, V. M., Arruda, D. C. S., Muella, M. T. A. H., Batista, I. S., Mascarenhas, M., de Paula, E. R., … Bertoni, F. C. P. (2009). Ionospheric zonal velocities at conjugate points over Brazil during the COPEX campaign: Experimental observations and theoretical validations. J. Geophys. Res.: Space Phys., 114(A4), A04309. https://doi.org/10.1029/2008JA013896 |
Spogli, L., Alfonsi, L., Cilliers, P. J., Correia, E., De Franceschi, G., Mitchell, C. N., Romano, V., Kinrade, J., and Cabrera, M. A. (2013a). GPS scintillations and total electron content climatology in the southern low, middle and high latitude regions. Ann. Geophys., 56(2). https://doi.org/10.4401/ag-6240 |
Spogli, L., Alfonsi, L., Romano, V., De Franceschi, G., Joao Francisco, G. M., Shimabukuro, M. H., Bougard, B., and Aquino, M. (2013b). Assessing the GNSS scintillation climate over Brazil under increasing solar activity. J. Atmos. Sol.-Terr. Phys., 105-106, 199–206. https://doi.org/10.1016/j.jastp.2013.10.003 |
Spogli, L., Sabbagh, D., Regi, M., Cesaroni, C., Perrone, L., Alfonsi, L., Di Mauro, D., Lepidi, S., Campuzano, S. A., .. Ippolito, A. (2021). Ionospheric response over Brazil to the August 2018 geomagnetic storm as probed by CSES-01 and Swarm satellites and by local ground-based observations. J. Geophys. Res.: Space Phys., 126, e2020JA028368. https://doi.org/10.1029/2020JA028368 |
Sreeja, V., Aquino, M., and Elmas, Z. G. (2011). Impact of ionospheric scintillation on GNSS receiver tracking performance over Latin America: Introducing the concept of tracking jitter variance maps. Space Wea., 9(10), S10002. https://doi.org/10.1029/2011SW000707 |
Sultan, P. J. (1996). Linear theory and modeling of the Rayleigh–Taylor instability leading to the occurrence of equatorial spread F. J. Geophys. Res.: Space Phsy., 101(A12), 26875–26891. https://doi.org/10.1029/96JA00682 |
Thébault, E., Finlay, C. C., Beggan, C. D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., .. Zvereva, T. (2015). International geomagnetic reference field: the 12th generation. Earth, Planets Space, 67(1), 79. https://doi.org/10.1186/S40623-015-0228-9 |
Tornatore, V., Cesaroni, C., Pezzopane, M., Alizadeh, M. M., and Schuh, H. (2021). Performance evaluation of VTEC GIMs for regional applications during different solar activity periods, using RING TEC values. Remote Sens., 13(8), 1470. https://doi.org/10.3390/rs13081470 |
Van Dierendonck, A. J., Klobuchar, J., and Hua, Q. (1993). Ionospheric scintillation monitoring using commercial single frequency C/A code receivers. In Proceedings of the 6th International Technical Meeting of the Satellite Division of the Institute of Navigation (pp. 1333-1342). Salt Lake City: ION.222 |
Veettil, S. V., Aquino, M., Marques, H. A., and Moraes, A. (2020). Mitigation of ionospheric scintillation effects on GNSS precise point positioning (PPP) at low latitudes. J. Geod., 94(2), 15. https://doi.org/10.1007/s00190-020-01345-z |
Watson, D. (1999). The natural neighbor series manuals and source codes. Comput. Geosci., 25(4), 463–466. https://doi.org/10.1016/S0098-3004(98)00150-2 |
Woodman, R. F., and La Hoz, C. (1976). Radar observations of F region equatorial irregularities. J. Geophys. Res., 81(31), 5447–5466. https://doi.org/10.1029/JA081i031p05447 |
Yeh, K. C., and Liu, C. H. (1982). Radio wave scintillations in the ionosphere. Proc. IEEE, 70(4), 324–360. https://doi.org/10.1109/PROC.1982.12313 |
Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res.: Space Phys., 119(12), 10474–10482. https://doi.org/10.1002/2014JA020708 |
[1] |
Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045 |
[2] |
K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039 |
[3] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[4] |
FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043 |
[5] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[6] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[7] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[8] |
Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050 |
[9] |
Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025 |
[10] |
Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan, 2021: Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China, Earth and Planetary Physics, 5, 407-415. doi: 10.26464/epp2021044 |
[11] |
H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047 |
[12] |
LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048 |
[13] |
Juan Yi, XuDong Gu, Wen Cheng, XinYue Tang, Long Chen, BinBin Ni, RuoXian Zhou, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters, Earth and Planetary Physics, 4, 238-245. doi: 10.26464/epp2020023 |
[14] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[15] |
XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001 |
[16] |
Yan Cheng, Jian Lin, XuHui Shen, Xiang Wan, XinXing Li, WenJun Wang, 2018: Analysis of GNSS radio occultation data from satellite ZH-01, Earth and Planetary Physics, 2, 499-504. doi: 10.26464/epp2018048 |
[17] |
Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006 |
[18] |
ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035 |
[19] |
ZeHao Zhang, ZhiGang Yuan, ShiYong Huang, XiongDong Yu, ZuXiang Xue, Dan Deng, Zheng Huang, 2022: Observations of kinetic Alfvén waves and associated electron acceleration in the plasma sheet boundary layer, Earth and Planetary Physics. doi: 10.26464/epp2022041 |
[20] |
RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)