Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Dai, L. K., Cui, J., Niu, D. D., Gu, H., Cao, Y. T., Wu, X. S. and Lai, H. R. (2021). Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?. Earth Planet. Phys., 5(1), 1–10. http://doi.org/10.26464/epp2021012

2021, 5(1): 1-10. doi: 10.26464/epp2021012

Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?

1. 

Planetary Environmental and Astrobiological Research Laboratory (PEARL), School of Atmospheric Sciences, Sun Yat-sen University, Zhuhai Guangdong 519082, China

2. 

Key Laboratory of Lunar and Deep Space Exploration, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100101, China

3. 

Center for Excellence in Comparative Planetology, Chinese Academy of Sciences, Hefei 230031, China

4. 

Institute of Space Science and Applied Technology, Harbin Institute of Technology, Shenzhen Guangdong 518055, China

Corresponding author: Jun Cui, cuijun7@mail.sysu.edu.cn

Received Date: 2020-09-14
Web Publishing Date: 2020-12-25

Solar Wind (SW) electron precipitation is able to deposit a substantial amount of energy in the nightside Martian upper atmosphere, potentially exerting an influence on its thermal structure. This study serves as the first investigation of such an issue, with the aid of the simultaneous measurements of both neutral density and energetic electron intensity made on board the recent Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft. We report that, from a statistical point of view, the existing measurements do not support a scenario of noticeable neutral heating via SW electron precipitation. However, during 3%−4% of the MAVEN orbits for which data are available, strong correlation between nightside temperature and electron intensity is observed, manifested as collocated enhancements in both parameters, as compared to the surrounding regions. In addition, our analysis also indicates that neutral heating via SW electron precipitation tends to be more effective at altitudes below 160 km for integrated electron intensities above 0.01 ergs·cm−2·s−1 over the energy range of 3−450 eV. The results reported here highlight the necessity of incorporating SW electron precipitation as a heat source in the nightside Martian upper atmosphere under extreme circumstances such as during interplanetary coronal mass ejections.

Key words: Mars, Solar Wind, upper atmosphere, MAVEN

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Mitchell, D., … Ness, N. F. (1998). Magnetic field and plasma observations at mars: Initial results of the mars global surveyor mission. Science, 279(5357), 1676–1680. https://doi.org/10.1126/science.279.5357.1676

Angelats i Coll, M., Forget, F., López-Valverde, M. A., and González-Galindo, F. (2005). The first Mars thermospheric general circulation model: the Martian atmosphere from the ground to 240 km. Geophys. Res. Lett., 32(4), L04201. https://doi.org/10.1029/2004GL021368

Bertaux, J. L., Leblanc, F., Witasse, O., Quemerais, E., Lilensten, J., Stern, S. A., Sandel, B., and Korablev, O. (2005). Discovery of an aurora on Mars. Nature, 435(7043), 790–794. https://doi.org/10.1038/nature03603

Bougher, S. W., and Roble, R. G. (1991). Comparative terrestrial planet thermospheres: 1. Solar cycle variation of global mean temperatures. J. Geophys. Res.: Space Phys., 96(A7), 11045–11055. https://doi.org/10.1029/91JA01162

Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (1999). Comparative terrestrial planet thermospheres: 2. Solar cycle variation of global structure and winds at equinox. J. Geophys. Res.: Planets, 104(E7), 16591–16611. https://doi.org/10.1029/1998JE001019

Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (2000). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res.: Planets, 105(E7), 17669–17692. https://doi.org/10.1029/1999JE001232

Bougher, S. W., Roeten, K. J., Olsen, K., Mahaffy, P. R., Benna, M., Elrod, M., Jain, S. K., Schneider, N. M., Deighan, J., … Jakosky, B. M. (2017). The structure and variability of Mars dayside thermosphere from MAVEN NGIMS and IUVS measurements: seasonal and solar activity trends in scale heights and temperatures. J. Geophys. Res.: Space Phys., 122(1), 1296–1313. https://doi.org/10.1002/2016JA023454

Bovino, S., Zhang, P., Gianturco, F. A., Dalgarno, A., and Kharchenko, V. (2011). Energy transfer in O collisions with He isotopes and helium escape from Mars. Geophys. Res. Lett., 38(2), L02203. https://doi.org/10.1029/2010GL045763

Connerney, J. E. P., Acunã, M. H., Wasilewski, P. J., Ness, N. F., Rème, H., Mazelle, C., Vignes, D., Lin, R. P., Mitchell, D. L., and Cloutier, P. A. (1999). Magnetic lineations in the ancient crust of mars. Science, 284(5415), 794–798. https://doi.org/10.1126/science.284.5415.794

Cui, J., Yelle, R. V., Vuitton, V., Waite, J. H. Jr., Kasprzak, W. T., Gell, D. A., Niemann, H. B., Müller-Wodarg, I. C. F., Borggren, N., … Magee, B. A. (2009). Analysis of Titan’s neutral upper atmosphere from Cassini Ion Neutral Mass Spectrometer measurements. Icarus, 200(2), 581–615. https://doi.org/10.1016/j.icarus.2008.12.005

Cui, J., Galand, M., Yelle, R. V., Wei, Y., and Zhang, S. J. (2015). Day-to-night transport in the Martian ionosphere: Implications from total electron content measurements. J. Geophys. Res.: Space Phys., 120(3), 2333–2346. https://doi.org/10.1002/2014JA020788

Cui, J., Yelle, R. V., Zhao, L. L., Stone, S., Jiang, F. Y., Cao, Y. T., Yao, M. J., Koskinen, T. T., and Wei, Y. (2018). The impact of crustal magnetic fields on the thermal structure of the Martian upper atmosphere. Astrophys. J. Lett., 853(2), L33. https://doi.org/10.3847/2041-8213/aaa89a

Cui, J., Cao, Y. T., Wu, X. S., Xu, S. S., Yelle, R. V., Stone, S., Vigren, E., Edberg, N. J. T., Shen, C. L., … Wei, Y. (2019). Evaluating local ionization balance in the nightside Martian upper atmosphere during MAVEN Deep Dip campaigns. Astrophys. J. Lett., 876(1), L12. https://doi.org/10.3847/2041-8213/ab1b34

England, S. L., Liu, G., Yîgit, E., Mahaffy, P. R., Elrod, M., Benna, M., Nakagawa, H., Terada, N., and Jakosky, B. (2017). MAVEN NGIMS observations of atmospheric gravity waves in the Martian thermosphere. J. Geophys. Res.: Space Phys., 122(2), 2310–2335. https://doi.org/10.1002/2016JA023475

Forbes, J. M., Lemoine, F. G., Bruinsma, S. L., Smith, M. D., and Zhang, X. L. (2008). Solar flux variability of Mars’ exosphere densities and temperatures. Geophys. Res. Lett., 35(1), L01201. https://doi.org/10.1029/2007GL031904

Forget, F., Montmessin, F., Bertaux, J. L., González-Galindo, F., Lebonnois, S., Quémerais, E., Reberac, A., Dimarellis, E., and López-Valverde, M. A. (2009). Density and temperatures of the upper Martian atmosphere measured by stellar occultations with Mars Express SPICAM. J. Geophys. Res.: Planets, 114(E1), E01004. https://doi.org/10.1029/2008JE003086

Fox, J. L., Johnson, A. S., Ard, S. G., Shuman, N. S., and Viggiano, A. A. (2017). Photochemical determination of O densities in the Martian thermosphere: effect of a revised rate coefficient. Geophys. Res. Lett., 44(16), 8099–8106. https://doi.org/10.1002/2017GL074562

Fu, M. H., Cui, J., Wu, X. S., Wu, Z. P., and Li, J. (2020). The variations of the Martian exobase altitude. Earth Planet. Phys., 4(1), 4–10. https://doi.org/10.26464/epp2020010

Girazian, Z., Mahaffy, P., Lillis, R. J., Benna, M., Elrod, M., Fowler, C. M., and Mitchell, D. L. (2017). Ion densities in the nightside ionosphere of Mars: Effects of electron impact ionization. Geophys. Res. Lett., 44(22), 11248–11256. https://doi.org/10.1002/2017GL075431

González-Galindo, F., López-Valverde, M. A., Angelats i Coll, M., and Forget, F. (2005). Extension of a Martian general circulation model to thermospheric altitudes: UV heating and photochemical models. J. Geophys. Res.: Planets, 110(E9), E09008. https://doi.org/10.1029/2004JE002312

González-Galindo, F., Forget, F., López-Valverde, M. A., Angelats i Coll, M., and Millour, E. (2009a). A ground-to-exosphere Martian general circulation model: 1. Seasonal, diurnal, and solar cycle variation of thermospheric temperatures. J. Geophys. Res.: Planets, 114(E4), E04001. https://doi.org/10.1029/2008JE003246

González-Galindo, F., Forget, F., López-Valverde, M. A., and Angelats i Coll, M. (2009b). A ground-to-exosphere Martian general circulation model: 2. Atmosphere during solstice conditions—Thermospheric polar warming. J. Geophys. Res.: Planets, 114(E8), E08004. https://doi.org/10.1029/2008JE003277

Gu, H., Cui, J., Niu, D. D., Cao, Y. T., Wu, X. S., Li, J., Wu, Z. P., He, F., and Wei, Y. (2020a). Neutral heating efficiency in the dayside Martian upper atmosphere. Astronom. J., 159(2), 39. https://doi.org/10.3847/1538-3881/ab5fcc

Gu, H., Cui, J., Niu, D. D., He, Z. G., and Li, K. (2020b). Monte Carlo calculations of helium escape on Mars via energy transfer from hot oxygen atoms. Astrophys. J., 902(2), 121. https://doi.org/10.3847/1538-4357/abb6e9

Jain, S. K., Stewart, A. I. F., Schneider, N. M., Deighan, J., Stiepen, A., Evans, J. S., Stevens, M. H., Chaffin, M. S., Crismani, M., … Jakosky, B. M. (2015). The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett., 42(21), 9023–9030. https://doi.org/10.1002/2015GL065419

Jain, S. K., Deighan, J., Schneider, N. M., Stewart, A. I. F., Evans, J. S., Thiemann, E. M. B., Chaffin, M. S., Crismani, M., Stevens, M. H., … Jakosky, B. M. (2018). Martian thermospheric response to an X8.2 solar flare on 10 September 2017 as seen by MAVEN/IUVS. Geophys. Res. Lett., 45(15), 7312–7319. https://doi.org/10.1029/2018GL077731

Jakosky, B. M., Grebowsky, J. M., Luhmann, J. G., and Brain, D. A. (2015). Initial results from the MAVEN mission to Mars. Geophys. Res. Lett., 42(21), 8791–8802. https://doi.org/10.1002/2015GL065271

Krasnopolsky, V. A. (2010). Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus, 207(2), 638–647. https://doi.org/10.1016/j.icarus.2009.12.036

Leclercq, L., Williamson, H. N., Johnson, R. E., Tucker, O. J., Tian, L., and Snowden, D. (2020). Molecular kinetic simulations of transient perturbations in a planet’s upper atmosphere. Icarus, 335, 113394. https://doi.org/10.1016/j.icarus.2019.113394

Lillis, R. J., Mitchell, D. L., Steckiewicz, M., Brain, D., Xu, S. S., Weber, T., Halekas, J., Connerney, J., Espley, J., … Eparvier, F. (2018). Ionizing electrons on the Martian nightside: structure and variability. J. Geophys. Res.: Space Phys., 123(5), 4349–4363. https://doi.org/10.1029/2017JA025151

Magalhães, J. A., Schofield, J. T., and Seiff, A. (1999). Results of the Mars Pathfinder atmospheric structure investigation. J. Geophys. Res.: Planets, 104(E4), 8943–8956. https://doi.org/10.1029/1998JE900041

Mahaffy, P. R., Benna, M., King, T., Harpold, D. N., Arvey, R., Barciniak, M., Bendt, M., Carrigan, D., Errigo, T., … Nolan, J. T. (2015a). The neutral gas and ion mass spectrometer on the mars atmosphere and volatile evolution mission. Space Sci. Rev., 195(1-4), 49–73. https://doi.org/10.1007/s11214-014-0091-1

Mahaffy, P. R., Benna, M., Elrod, M., Yelle, R. V., Bougher, S. W., Stone, S. W., and Jakosky, B. M. (2015b). Structure and composition of the neutral upper atmosphere of Mars from the MAVEN NGIMS investigation. Geophys. Res. Lett., 42(21), 8951–8957. https://doi.org/10.1002/2015GL065329

Mitchell, D. L., Mazelle, C., Sauvaud, J. A., Thocaven, J. J., Rouzaud, J., Fedorov, A., Rouger, P., Toublanc, D., Taylor, E., … Jakosky, B. M. (2016). The MAVEN solar wind electron analyzer. Space Sci. Rev., 200(1-4), 495–528. https://doi.org/10.1007/s11214-015-0232-1

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res.: Planets, 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555

Niu, D. D., Cui, J., Gu, H., Wu, X. S., Wu, S. Q., Lu, H. Y., Chai, L. H., and Wei, Y. (2020). Energetic Electron depletions in the nightside Martian upper atmosphere revisited. J. Geophys. Res.: Space Phys., 125(4), e2019JA027670. https://doi.org/10.1029/2019JA027670

Pilinski, M., Bougher, S., Greer, K., Thiemann, E., Andersson, L., Benna, M., and Elrod, M. (2018). First Evidence of persistent nighttime temperature structures in the neutral thermosphere of Mars. Geophys. Res. Lett., 45(17), 8819–8825. https://doi.org/10.1029/2018GL078761

Schofield, J. T., Barnes, J. R., Crisp, D., Haberle, R. M., Larsen, S., Magalhães, J. A., Murphy, J. R., Seiff, A., and Wilson, G. (1997). The mars pathfinder atmospheric structure investigation/meteorology (ASI/MET) experiment. Science, 278(5344), 1752–1758. https://doi.org/10.1126/science.278.5344.1752

Siddle, A. G., Mueller-Wodarg, I. C. F., Stone, S. W., and Yelle, R. V. (2019). Global characteristics of gravity waves in the upper atmosphere of Mars as measured by MAVEN/NGIMS. Icarus, 333, 12–21. https://doi.org/10.1016/j.icarus.2019.05.021

Slipski, M., Jakosky, B. M., Benna, M., Elrod, M., Mahaffy, P., Kass, D., Stone, S., and Yelle, R. (2018). Variability of Martian turbopause altitudes. J. Geophys. Res.: Planet, 123(11), 2939–2957. https://doi.org/10.1029/2018JE005704

Steckiewicz, M., Mazelle, C., Garnier, P., André, N., Penou, E., Beth, A., Sauvaud, J. A., Toublanc, D., Mitchell, D. L., … Jakosky, B. M. (2015). Altitude dependence of nightside Martian suprathermal electron depletions as revealed by MAVEN observations. Geophys. Res. Lett., 42(21), 8877–8884. https://doi.org/10.1002/2015GL065257

Steckiewicz, M., Garnier, P., André, N., Mitchell, D. L., Andersson, L., Penou, E., Beth, A., Fedorov, A., Sauvaud, J. A., … Jakosky, B. M. (2017). Comparative study of the Martian suprathermal electron depletions based on Mars Global Surveyor, Mars Express, and Mars Atmosphere and Volatile EvolutioN mission observations. J. Geophys. Res.: Space Phys., 122(1), 857–873. https://doi.org/10.1002/2016JA023205

Stiepen, A., Gérard, J. C., Bougher, S., Montmessin, F., Hubert, B., and Bertaux, J. L. (2015). Mars thermospheric scale height: CO Cameron and CO2+ dayglow observations from Mars Express. Icarus, 245, 295–305. https://doi.org/10.1016/j.icarus.2014.09.051

Stone, S. W., Yelle, R. V., Benna, M., Elrod, M. K., and Mahaffy, P. R. (2018). Thermal structure of the Martian upper atmosphere from MAVEN NGIMS. J. Geophys. Res.: Planets, 123(11), 2842–2867. https://doi.org/10.1029/2018JE005559

Wilson, L. B., Chen, L. J., Wang, S., Schwartz, S. J., Turner, D. L., Stevens, M. L., Kasper, J. C., Osmane, A., Caprioli, D., … and Goodrich, K. A. (2020). Electron energy partition across interplanetary shocks. III. Analysis. Astrophys. J., 893(1), 22. https://doi.org/10.3847/1538-4357/ab7d39

Wu, X. S., Cui, J., Yelle, R. V., Cao, Y. T., He, Z. G., He, F., and Wei, Y. (2020). Photoelectrons as a tracer of planetary atmospheric composition: application to CO on Mars. J. Geophys. Res.: Planets, 125(7), e2020JE006441. https://doi.org/10.1029/2020JE006441

Zhang, Q., Gu, H., Cui, J., Cheng, Y. M., He, Z. G., Zhong, J. H., He, F., and Wei, Y. (2020). Atomic oxygen escape on Mars driven by electron impact excitation and ionization. Astronom. J., 159(2), 54. https://doi.org/10.3847/1538-3881/ab6297

Zurek, R. W., Tolson, R. A., Bougher, S. W., Lugo, R. A., Baird, D. T., Bell, J. M., and Jakosky, B. M. (2017). Mars thermosphere as seen in MAVEN accelerometer data. J. Geophys. Res.: Space Phys., 122(3), 3798–3814. https://doi.org/10.1002/2016JA023641

[1]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[2]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[3]

XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038

[4]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[5]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[6]

MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010

[7]

XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024

[8]

Hao Gu, Jun Cui, DanDan Niu, LongKang Dai, JianPing Huang, XiaoShu Wu, YongQiang Hao, Yong Wei, 2020: Observation of CO2++ dication in the dayside Martian upper atmosphere, Earth and Planetary Physics, 4, 396-402. doi: 10.26464/epp2020036

[9]

Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040

[10]

ChuanPeng Hou, JianSen He, Lei Zhang, Ying Wang, Die Duan, 2021: Dynamics of the charged particles released from a Sun-grazing comet in the solar corona, Earth and Planetary Physics, 5, 232-238. doi: 10.26464/epp2021023

[11]

Lei Liu, Feng Tian, 2018: Efficient metal emissions in the upper atmospheres of close-in exoplanets, Earth and Planetary Physics, 2, 22-39. doi: 10.26464/epp2018003

[12]

MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029

[13]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[14]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[15]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[16]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[17]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[18]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[19]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[20]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai