Citation:
Wong, C.-F., Chow, K.-C., Chan, K. L., Xiao, J. and Wang, Y. (2021). Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars. Earth Planet. Phys., 5(1), 11–18. http://doi.org/10.26464/epp2021005
2021, 5(1): 11-18. doi: 10.26464/epp2021005
Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars
Space Science Institute / State Key Laboratory of Lunar and Planetary Science, Macau University of Science and Technology, Taipa, Macau, China |
Airborne dust is an important constituent in the Martian atmosphere because of its radiative interaction with the atmospheric circulation. Dust size is one crucial factor in determining this effect. In reality dust sizes are varied; however, in numerical modeling of dust processes, dust size has usually been described by choice of a particular size distribution function, or by use of fixed values of effective radius (ER) and effective variance (EV). In this work, we present analytical expressions that have been derived to specify ER and EV for N-bin dust schemes, based on a model-calculated dust mixing ratio. Numerical simulations based on this approach thus would consider the effects of variable ER on the atmospheric radiation and their interaction. Results have revealed some interesting features of the dust distribution parameters, such as seasonal and spatial variation of ER and EV, which are generally consistent with some previous observational and modeling studies. Compared with the usual approach of using a fixed ER, simulation results from the present approach suggest that the variability of ER can have significant effects on the simulated thermal field of the Martian atmosphere.
Basu, S., Richardson, M., and Wilson, R. (2004). Simulation of the Martian dust cycle with the GFDL Mars GCM. J. Geophys. Res.: Planets, 109(E11), E11006. https://doi.org/10.1029/2004JE002243 |
Basu, S., Wilson, J., Richardson, M., and Ingersoll, A. (2006). Simulation of spontaneous and variable global dust storms with the GFDL Mars GCM. J. Geophys. Res.: Planets, 111(E9), E09004. https://doi.org/10.1029/2005JE002660 |
Briegleb, B. P. (1992). Delta-Eddington approximation for solar radiation in the NCAR community climate model. J. Geophys. Res.: Atmos., 97(D7), 7603–7612. https://doi.org/10.1029/92JD00291 |
Chen-Chen, H., Pérez-Hoyos, S., and Sánchez-Lavega, A. (2019). Dust particle size and optical depth on Mars retrieved by the MSL navigation cameras. Icarus, 319, 43–57. https://doi.org/10.1016/j.icarus.2018.09.010 |
Chow, K. C., Chan, K. L., and Xiao, J. (2018). Dust activity over the Hellas basin of Mars during the period of southern spring equinox. Icarus, 311, 306–316. https://doi.org/10.1016/j.icarus.2018.04.011 |
Clancy, R. T., Wolff, M. J., and Christensen, P. R. (2003). Mars aerosol studies with the MGS TES emission phase function observations: optical depths, particle sizes, and ice cloud types versus latitude and solar longitude. J. Geophys. Res.: Planets, 108(E9), 5098. https://doi.org/10.1029/2003JE002058 |
Clancy, R. T., Wolff, M. J., Whitney, B. A., Cantor, B. A., Smith, M. D., and McConnochie, T. H. (2010). Extension of atmospheric dust loading to high altitudes during the 2001 Mars dust storm: MGS TES limb observations. Icarus, 207(1), 98–109. https://doi.org/10.1016/j.icarus.2009.10.011 |
Dlugach, Z. M., Korablev, O. I., Morozhenko, A. V., Moroz, V. I., Petrova, E. V., and Rodin, A. V. (2003). Physical properties of dust in the martian atmosphere: analysis of contradictions and possible ways of their resolution. Sol. Syst. Res., 37(1), 1–19. https://doi.org/10.1023/A:1022395404115 |
Fedorova, A. A., Korablev, O. I., Bertaux, J. L., Rodin, A. V., Montmessin, F., Belyaev, D. A., and Reberac, A. (2009). Solar infrared occultation observations by SPICAM experiment on Mars-Express: simultaneous measurements of the vertical distributions of H2O, CO2 and aerosol. Icarus, 200(1), 96–117. https://doi.org/10.1016/j.icarus.2008.11.006 |
Fedorova, A. A., Montmessin, F., Rodin, A. V., Korablev, O. I., Määttänen, A., Maltagliati, L., and Bertaux, J. L. (2014). Evidence for a bimodal size distribution for the suspended aerosol particles on mars. Icarus, 231, 239–260. https://doi.org/10.1016/j.icarus.2013.12.015 |
Gierasch, P., and Goody, R. (1968). A study of the thermal and dynamical structure of the Martian lower atmosphere. Planet. Space Sci., 16(5), 615–646. https://doi.org/10.1016/0032-0633(68)90102-5 |
Gierasch, P. J., and Goody, R. M. (1972). The effect of dust on the temperature of the Martian atmosphere. J. Atmos. Sci., 29(2), 400–402. https://doi.org/10.1175/1520-0469(1972)029<0400:TEODOT>2.0.CO;2 |
Guo, X., Lawson, W. G., Richardson, M. I., and Toigo, A. (2009). Fitting the Viking lander surface pressure cycle with a Mars General Circulation Model. J. Geophys. Res.: Planets, 114(E7), E07006. https://doi.org/10.1029/2008JE003302 |
Guzewich, S. D., Smith, M. D., and Wolff, M. J. (2014). The vertical distribution of Martian aerosol particle size. J. Geophys. Res.: Planets, 119(12), 2694–2708. https://doi.org/10.1002/2014JE004704 |
Haberle, R. M., Leovy, C. B., and Pollack, J. B. (1982). Some effects of global dust storms on the atmospheric circulation of Mars. Icarus, 50(2-3), 322–367. https://doi.org/10.1016/0019-1035(82)90129-4 |
Hansen, J. E., and Travis, L. D. (1974). Light scattering in planetary atmospheres. Space Sci. Rev., 16(4), 527–610. https://doi.org/10.1007/BF00168069 |
Kahre, M., Hollingsworth, J., Haberle, R., and Murphy, J. (2008). Investigations of the variability of dust particle sizes in the martian atmosphere using the NASA Ames General Circulation Model. Icarus, 195(2), 576–597. https://doi.org/10.1016/j.icarus.2008.01.023 |
Kahre, M. A., Murphy, J. R., Haberle, R. M., Montmessin, F., and Schaeffer, J. (2005). Simulating the Martian dust cycle with a finite surface dust reservoir. Geophys. Res. Lett., 32(20), L20204. https://doi.org/10.1029/2005GL023495 |
Kahre, M. A., Murphy, J. R., and Haberle, R. M. (2006). Modelling the Martian dust cycle and surface dust reservoirs with the NASA Ames general circulation model. J. Geophys. Res.: Planets, 111(E6), E06008. https://doi.org/10.1029/2005JE002588 |
Kahre, M. A., Murphy, J. R., Newman, C. E., Wilson, R. J., Cantor, B. A., Lemmon, M. T., and Wolff, M. J. (2017). The Mars dust cycle. In R. M. Haberle, et al. (Eds.), The Atmosphere and Climate of Mars (pp. 295-337). Cambridge: Cambridge University Press. https://doi.org/10.1017/9781139060172.010222 |
Lee, C., Richardson, M. I., Newman, C. E., and Mischna, M. A. (2018). The sensitivity of solsticial pauses to atmospheric ice and dust in the MarsWRF General Circulation Model. Icarus, 311, 23–34. https://doi.org/10.1016/j.icarus.2018.03.019 |
Lemmon, M. T., Wolff, M. J., Smith, M. D., Clancy, R. T., Banfield, D., Landis, G. A., Ghosh, A., Smith, R. H., Spanovich, N., … Squyres, S. W. (2004). Atmospheric imaging results from the Mars exploration rovers: spirit and opportunity. Science, 306(5702), 1753–1756. https://doi.org/10.1126/science.1104474 |
Määttänen, A., Listowski, C., Montmessin, F., Maltagliati, L., Reberac, A., Joly, L., and Bertaux, J. L. (2013). A complete climatology of the aerosol vertical distribution on Mars from MEx/SPICAM UV solar occultations. Icarus, 223(2), 892–941. https://doi.org/10.1016/j.icarus.2012.12.001 |
Madeleine, J. B., Forget, F., Millour, E., Montabone, L., and Wolff, M. J. (2011). Revisiting the Radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res.: Planets, 116(11), E11010. https://doi.org/10.1029/2011JE003855 |
Montabone, L., Forget, F., Millour, E., Wilson, R. J., Lewis, S. R., Cantor, B., Kass, D., Kleinböhl, A., Lemmon, M. T., … Wolff, M. J. (2015). Eight-year climatology of dust optical depth on Mars. Icarus, 251, 65–95. https://doi.org/10.1016/j.icarus.2014.12.034 |
Montmessin, F., Rannou, P., and Cabane, M. (2002). New insights into Martian dust distribution and water-ice cloud microphysics. J. Geophys. Res.: Planets, 107(E6), 5037. https://doi.org/10.1029/2001JE001520 |
Montmessin, F., Quémerais, E., Bertaux, J. L., Korablev, O., Rannou, P., and Lebonnois, S. (2006). Stellar occultations at UV wavelengths by the SPICAM instrument: Retrieval and analysis of Martian haze profiles. J. Geophys. Res.: Planets, 111(E9), E09S09. https://doi.org/10.1029/2005JE002662 |
Montmessin, F., Korablev, O., Lefèvre, F., Bertaux, J. L., Fedorova, A., Trokhimovskiy, A., Chaufray, J. Y., Lacombe, G., Reberac, A., … Chapron, N. (2017). SPICAM on mars express: a 10 year in-depth survey of the Martian atmosphere. Icarus, 297, 195–216. https://doi.org/10.1016/j.icarus.2017.06.022 |
Morrison, H., and Gettelman, A. (2008). A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, version 3 (CAM3). Part I: description and numerical tests. J. Climate, 21(15), 3642–3659. https://doi.org/10.1175/2008JCLI2105.1 |
Murphy, J. R., Haberle, R. M., Toon, O. B., and Pollack, J. B. (1993). Martian global dust storms: zonally symmetric numerical simulations including size-dependent particle transport. J. Geophys. Res.: Planets, 98(E2), 3197–3220. https://doi.org/10.1029/92JE02945 |
Neary, L., and Daerden, F. (2018). The GEM-Mars general circulation model for Mars: description and evaluation. Icarus, 300, 458–476. https://doi.org/10.1016/j.icarus.2017.09.028 |
Newman, C. E., and Richardson, M. I. (2015). The impact of surface dust source exhaustion on the martian dust cycle, dust storms and interannual variability, as simulated by the MarsWRF General Circulation Model. Icarus, 257, 47–87. https://doi.org/10.1016/j.icarus.2015.03.030 |
Pollack, J. B., Ockert-Bell, M. E., and Shepard, M. K. (1995). Viking Lander image analysis of Martian atmospheric dust. J. Geophys. Res.: Planets, 100(E3), 5235–5250. https://doi.org/10.1029/94JE02640 |
Rannou, P., Perrier, S., Bertaux, J. L., Montmessin, F., Korablev, O., and Rébérac, A. (2006). Dust and cloud detection at the Mars limb with UV scattered sunlight with SPICAM. J. Geophys. Res.: Planets, 111(E9), E09S10. https://doi.org/10.1029/2006JE002693 |
Richardson, M. I., Toigo, A. D., and Newman, C. E. (2007). PlanetWRF: a general purpose, local to global numerical model for planetary atmospheric and climate dynamics. J. Geophys. Res.: Planets, 112(9), E09001. https://doi.org/10.1029/2006JE002825 |
Schulz, M., Balkanski, Y. J., Guelle, W., and Dulac, F. (1998). Role of aerosol size distribution and source location in a three-dimensional simulation of a Saharan dust episode tested against satellite-derived optical thickness. J. Geophys. Res.: Atmos., 103(D9), 10579–10592. https://doi.org/10.1029/97JD02779 |
Smith, M. D. (2008). Spacecraft observations of the Martian atmosphere. Ann. Rev. Earth Planet. Sci., 36, 191–219. https://doi.org/10.1146/annurev.earth.36.031207.124334 |
Smith, M. D., Zorzano, M. P., Lemmon, M., Martín-Torres, J., and de Cal, T. M. (2016). Aerosol optical depth as observed by the Mars Science Laboratory REMS UV photodiodes. Icarus, 280, 234–248. https://doi.org/10.1016/j.icarus.2016.07.012 |
Toigo, A. D., Lee, C., Newman, C. E., and Richardson, M. I. (2012). The impact of resolution on the dynamics of the martian global atmosphere: varying resolution studies with the MarsWRF GCM. Icarus, 221(1), 276–288. https://doi.org/10.1016/j.icarus.2012.07.020 |
Tomasko, M. G., Doose, L. R., Lemmon, M., Smith, P. H., and Wegryn, E. (1999). Properties of dust in the Martian atmosphere from the Imager on Mars Pathfinder. J. Geophys. Res.: Planets, 104(E4), 8987–9007. https://doi.org/10.1029/1998JE900016 |
Vicente-Retortillo, Á., Martínez, G. M., Rennó, N. O., Lemmon, M. T., and de la Torre-Juárez, M. (2017). Determination of dust aerosol particle size at Gale Crater using REMS UVS and Mastcam measurements. Geophys. Res. Lett., 44(8), 3502–3508. https://doi.org/10.1002/2017GL072589 |
Wang, C., Forget, F., Bertrand, T., Spiga, A., Millour, E., and Navarro, T. (2018). Parameterization of rocket dust storms on mars in the LMD Martian GCM: modeling details and validation. J. Geophys. Res.: Planets, 123(4), 982–1000. https://doi.org/10.1002/2017JE005255 |
Wolff, M. J., and Clancy, R. T. (2003). Constraints on the size of Martian aerosols from Thermal Emission Spectrometer observations. J. Geophys. Res.: Planets, 108(E9), 5097. https://doi.org/10.1029/2003JE002057 |
Wolff, M. J., Smith, M. D., Clancy, R. T., Spanovich, N., Whitney, B. A., Lemmon, M. T., Bandfield, J. L., Banfield, D., Ghosh, A., … Squyres, S. (2006). Constraints on dust aerosols from the Mars Exploration Rovers using MGS overflights and Mini-TES. J. Geophys. Res.: Planets, 111(E12), E12S17. https://doi.org/10.1029/2006JE002786 |
Wolff, M. J., Smith, M. D., Clancy, R. T., Arvidson, R., Kahre, M., Seelos IV, F., Murchie, S., and Savijärvi, H. (2009). Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res.: Planets, 114(E2), E00D04. https://doi.org/10.1029/2009JE003350 |
Xiao, J., Chow, K. C., and Chan, K. L. (2019). Dynamical processes of dust lifting in the northern mid-latitude region of Mars during the dust storm season. Icarus, 317, 94–103. https://doi.org/10.1016/j.icarus.2018.07.020 |
[1] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[2] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[3] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[4] |
ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055 |
[5] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[6] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
[7] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[8] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[9] |
ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064 |
[10] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[11] |
YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008 |
[12] |
WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052 |
[13] |
Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009 |
[14] |
Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025 |
[15] |
XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035 |
[16] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[17] |
MeiJuan Yao, Jun Cui, XiaoShu Wu, YingYing Huang, WenRui Wang, 2019: Variability of the Martian ionosphere from the MAVEN Radio Occultation Science Experiment, Earth and Planetary Physics, 3, 283-289. doi: 10.26464/epp2019029 |
[18] |
XiaoShu Wu, Jun Cui, Jiang Yu, LiJuan Liu, ZhenJun Zhou, 2019: Photoelectron balance in the dayside Martian upper atmosphere, Earth and Planetary Physics, 3, 373-379. doi: 10.26464/epp2019038 |
[19] |
MengHao Fu, Jun Cui, XiaoShu Wu, ZhaoPeng Wu, Jing Li, 2020: The variations of the Martian exobase altitude, Earth and Planetary Physics, 4, 4-10. doi: 10.26464/epp2020010 |
[20] |
Qi Xu, XiaoJun Xu, Qing Chang, JiaYing Xu, Jing Wang, YuDong Ye, 2020: An ICME impact on the Martian hydrogen corona, Earth and Planetary Physics, 4, 38-44. doi: 10.26464/epp2020006 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)