Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Shi, G. C., Hu, X., Yao, Z. G., Guo, W. J., Sun, M. C. and Gong, X. Y. (2021). Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection. Earth Planet. Phys., 5(1), 79–89. http://doi.org/10.26464/epp2021002

2021, 5(1): 79-89. doi: 10.26464/epp2021002

ATMOSPHERIC PHYSICS

Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection

1. 

National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. 

Beijing Institution of Applied Meteorology, Beijing 100029, China

3. 

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: ZhiGang Yao, zhigangyao@mail.iap.ac.cn

Received Date: 2020-05-11
Web Publishing Date: 2020-09-21

Concentric gravity waves (CGWs) in the middle and upper atmosphere show wave-coupling processes between the lower atmosphere and the middle and upper atmosphere. In this research, we analyzed a case of CGWs detected simultaneously by the AIRS (Atmospheric Infrared Sounder) and the VIIRS/DNB (Day/Night Band of the Visible Infrared Imager Radiometer Suite) in the stratosphere and mesosphere. Results showed that gravity waves (GWs) were generated by the collocated Hurricane Bejisa on the island of Mauritius. The AIRS data showed arc-like phase fronts of GWs with horizontal wavelengths of 190 and 150 km at 21:08 coordinated universal time (UTC) on 1 January 2014 and at 10:00 UTC on 2 January 2014, whereas the DNB observed arced GWs with horizontal wavelengths of 60 and 150 km in the same geographic regions at 22:24 UTC. The characteristics of CGW parameters in the stratosphere (~40 km) and the mesosphere (~87 km), such as the vertical wavelength, intrinsic frequency, and intrinsic horizontal phase speed, were first derived together with the background winds from ERA5 reanalysis data and Horizontal Wind Model data through the dispersion relationship of GWs and the wind-filtering theory.

Key words: concentric gravity waves, wavelength, intrinsic frequency, phase speed

Alexander, M. J., and Holton, J. R. (1997). A model study of zonal forcing in the equatorial stratosphere by convectively induced gravity waves. J. Atmos. Sci., 54(3), 408–419. https://doi.org/10.1175/1520-0469(1997)054<0408:AMSOZF>2.0.CO;2

Alexander, M. J., and Rosenlof, K. H. (2003). Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parameterization in global models. J. Geophys. Res. Atmos., 108(D19), 4597. https://doi.org/10.1029/2003JD003373

Alexander, M. J., May, P. T., and Beres, J. H. (2004). Gravity waves generated by convection in the Darwin area during the Darwin Area Wave Experiment. J. Geophys. Res. Atmos., 109(D20), D20S04. https://doi.org/10.1029/2004JD004729

Alexander, M. J., and Barnet, C. (2007). Using satellite observations to constrain parameterizations of gravity wave effects for global models. J. Atmos. Sci., 64(5), 1652–1665. https://doi.org/10.1175/JAS3897.1

Alexander, M. J., and Teitelbaum, H. (2007). Observation and analysis of a large amplitude mountain wave event over the Antarctic Peninsula. J. Geophys. Res. Atmos., 112(D21), D21103. https://doi.org/10.1029/2006JD008368

Alexander, M. J., Geller, M., McLandress, C., Polavarapu, S., Preusse, P., Sassi, F., Sato, K., Eckermann, S., Ern, M., … Watanabe, S. (2010). Recent developments in gravity-wave effects in climate models and the global distribution of gravity-wave momentum flux from observations and models. Quart. J. Roy. Meteor. Soc., 136(650), 1103–1124. https://doi.org/10.1002/qj.637

Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., Revercomb, H., Rosenkranz, P. W., Smith, W. L., … Susskind, J. (2003). AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems. IEEE Trans. Geosci. Remote Sens., 41(2), 253–264. https://doi.org/10.1109/TGRS.2002.808356

Charron, M., and Manzini, E. (2002). Gravity waves from fronts: parameterization and middle atmosphere response in a general circulation model. J. Atmos. Sci., 59(5), 923–941. https://doi.org/10.1175/1520-0469(2002)059<0923:GWFFPA>2.0.CO;2

Fritts, D. C., and Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 1003. https://doi.org/10.1029/2001RG000106

Gong, J., Yue, J., and Wu, D. L. (2015). Global survey of concentric gravity waves in AIRS images and ECMWF analysis. J. Geophys. Res. Atmos., 120(6), 2210–2228. https://doi.org/10.1002/2014JD022527

Heale, C. J., Bossert, K., Snively, J. B., Fritts, D. C., Pautet, P. D., and Taylor, M. J. (2017). Numerical modeling of a multiscale gravity wave event and its airglow signatures over Mount Cook, New Zealand, during the DEEPWAVE campaign. J. Geophys. Res. Atmos., 122(2), 846–860. https://doi.org/10.1002/2016JD025700

Hersbach, D., and Dee, D. (2016). ERA5 reanalysis is in production. ECMWF Newsletter., 147.

Hoffmann, L., and Alexander, M. J. (2010). Occurrence frequency of convective gravity waves during the North American thunderstorm season. J. Geophys. Res. Atmos., 115(D20), D20111. https://doi.org/10.1029/2010JD014401

Hoffmann, L., Xue, X., and Alexander, M. J. (2013). A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J. Geophys. Res. Atmos., 118(2), 416–434. https://doi.org/10.1029/2012JD018658

Huang, K. M., Zhang, S. D., Fan, Y., and Chen, Z. Y. (2009). Simulation of the equatorial quasi-biennial oscillation based on the parameterization of continuously spectral gravity waves. Chin. Sci. Bull, 54(2), 288–295. https://doi.org/10.1007/s11434-008-0409-z

Kaifler, B., Kaifler, N., Ehard, B., Dörnbrack, A., Rapp, M., and Fritts, D. C. (2015). Influences of source conditions on mountain wave penetration into the stratosphere and mesosphere. Geophys. Res. Lett., 42(21), 9488–9494. https://doi.org/10.1002/2015GL066465

Kim, S. Y., Chun, H. Y., and Wu, D. L. (2009). A study on stratospheric gravity waves generated by Typhoon Ewiniar: Numerical simulations and satellite observations. J. Geophys. Res. Atmos., 114(D22), D22104. https://doi.org/10.1029/2009JD011971

Kim, S. Y., and Chun, H. Y. (2010). Stratospheric gravity waves generated by Typhoon Saomai (2006): Numerical modeling in a moving frame following the typhoon. J. Atmos. Sci., 67(11), 3617–3636. https://doi.org/10.1175/2010JAS3374.1

Kuester, M. A., Alexander, M. J., and Ray, E. A. (2008). A model study of gravity waves over Hurricane Humberto (2001). J. Atmos. Sci., 65(10), 3231–3246. https://doi.org/10.1175/2008JAS2372.1

Lee, T. E., Miller, S. D., Turk, F. J., Schueler, C., Julian, R., Deyo, S., Dills, P., and Wang, S. (2006). The NPOESS VIIRS day/night visible sensor. Bull. Amer. Meteor. Soc., 87(2), 191–200. https://doi.org/10.1175/BAMS-87-2-191

Liu, X., Xu, J., Liu, H. L., Yue, J., and Yuan, W. (2014). Simulations of large winds and wind shears induced by gravity wave breaking in the mesosphere and lower thermosphere (MLT) region. Ann. Geophys., 32(5), 543–552. https://doi.org/10.5194/angeo-32-543-2014

Miller, S. D., Mills, S. P., Elvidge, C. D., Lindsey, T., Lee, T. F., and Hawkins, J. D. (2012). Suomi satellite brings to light a unique frontier of nighttime environmental sensing capabilities. Proc. Natl. Acad. Sci. USA, 109(39), 15706–15711. https://doi.org/10.1073/pnas.1207034109

Miller, S. D., Straka III, W., Mills, S. P., Elvidge, C. D., Lee, T. F., Solbrig, J., Walther, A., Heidinger, A. K., and Weiss, S. (2013). Illuminating the capabilities of the Suomi National Polar-Orbiting Partnership (NPP) Visible Infrared Imaging Radiometer Suite (VIIRS) Day/Night Band. Remote Sens., 5(12), 6717–6766. https://doi.org/10.3390/rs5126717

Perwitasari, S., Sakanoi, T., Nakamura, T., Ejiri, M. K., Tsutsumi, M., Tomikawa, Y., Otsuka, Y., Yamazaki, A., and Saito, A. (2016). Three years of concentric gravity wave variability in the mesopause as observed by IMAP/VISI. Geophys. Res. Lett., 43(22), 11528–11535. https://doi.org/10.1002/2016GL071511

Piani, C., Durran, D., Alexander, M. J., and Holton, J. R. (2000). A numerical study of three-dimensional gravity waves triggered by deep tropical convection and their role in the dynamics of the QBO. J. Atmos. Sci., 57(22), 3689–3702. https://doi.org/10.1175/1520-0469(2000)057<3689:ANSOTD>2.0.CO;2

Stephan, C., Alexander, M. J., and Richter, J. H. (2016). Characteristics of gravity waves from convection and implications for their parameterization in global circulation models. J. Atmos. Sci., 73(7), 2729–2742. https://doi.org/10.1175/JAS-D-15-0303.1

Suzuki, S., Vadas, S. L., Shiokawa, K., Otsuka, Y., Kawamura, S., and Murayama, Y. (2013). Typhoon-induced concentric airglow structures in the mesopause region. Geophys. Res. Lett., 40(22), 5983–5987. https://doi.org/10.1002/2013GL058087

Vadas, S. L., and Fritts, D. C. (2009). Reconstruction of the gravity wave field from convective plumes via ray tracing. Ann. Geophys., 27(1), 147–177. https://doi.org/10.5194/angeo-27-147-2009

Vadas, S. L., and Becker, E. (2018). Numerical modeling of the excitation, propagation, and dissipation of primary and secondary gravity waves during Wintertime at McMurdo Station in the Antarctic. J. Geophys. Res. Atmos., 123(17), 9326–9369. https://doi.org/10.1029/2017JD027974

Vadas, S. L., Zhao, J., Chu, X. Z., and Becker, E. (2018). The excitation of secondary gravity waves from local body forces: theory and observation. J. Geophys. Res. Atmos., 123(17), 9296–9325. https://doi.org/10.1029/2017JD027970

Xu, S., Yue, J., Xue, X. H., Vadas, S. L., Miller, S. D., Azeem, I., Straka III, W., Hoffmann, L., and Zhang, S. M. (2019). Dynamical coupling between hurricane matthew and the middle to upper atmosphere via gravity waves. J. Geophys. Res.: Space Phys., 124(5), 3589–3608. https://doi.org/10.1029/2018JA026453

Yamashita, C., Liu, H. L., and Chu, X. Z. (2010). Responses of mesosphere and lower thermosphere temperatures to gravity wave forcing during stratospheric sudden warming. Geophys. Res. Lett., 37(9), L09803. https://doi.org/10.1029/2009GL042351

Yue, J., Vadas, S. L., She, C. Y., Nakamura, T., Reising, S. C., Liu, H. L., Stamus, P., Krueger, D. A., Lyons, W., and Li, T. (2009). Concentric gravity waves in the mesosphere generated by deep convective plumes in the lower atmosphere near Fort Collins, Colorado. J. Geophys. Res. Atmos., 114(D6), D06104. https://doi.org/10.1029/2008JD011244

Yue, J., Hoffmann, L., and Alexander, M. J. (2013). Simultaneous observations of convective gravity waves from a ground-based airglow imager and the AIRS satellite experiment. J. Geophys. Res. Atmos., 118(8), 3178–3191. https://doi.org/10.1002/jgrd.50341

Yue, J., Miller, S. D., Hoffmann, L., and StrakaIII, W. C. (2014). Stratospheric and mesospheric concentric gravity waves over Tropical Cyclone Mahasen: Joint AIRS and VIIRS satellite observations. J. Atmos. Sol.-Terr. Phys., 119, 83–90. https://doi.org/10.1016/j.jastp.2014.07.003

Zhang, S. D., and Yi, F. (2007). Latitudinal and seasonal variations of inertial gravity wave activity in the lower atmosphere over central China. J. Geophys. Res. Atmos., 112(D5), D05109. https://doi.org/10.1029/2006JD007487

[1]

Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029

[2]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[3]

Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047

[4]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics, 4, 461-471. doi: 10.26464/epp2020039

[5]

ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061

[6]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[7]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[8]

Wing Ching Jeremy Wong, JinPing Zi, HongFeng Yang, JinRong Su, 2021: Spatial-temporal evolution of injection-induced earthquakes in the Weiyuan Area determined by machine-learning phase picker and waveform cross-correlation, Earth and Planetary Physics, 5, 485-500. doi: 10.26464/epp2021055

[9]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[10]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[11]

DeYao Zhang, WenYong Pan, DingHui Yang, LingYun Qiu, XingPeng Dong, WeiJuan Meng, 2021: Three-dimensional frequency-domain full waveform inversion based on the nearly-analytic discrete method, Earth and Planetary Physics, 5, 149-157. doi: 10.26464/epp2021022

[12]

Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038

[13]

Apollinaire Bouba, Kasi Njeudjang, Loudi Yap, Bouba Saidou, Joseph Kamguia, Tabod Charles Tabod, 2022: Interpretation of locally high gravity anomalies using terrestrial gravity data in Bagodo, North Cameroon, Earth and Planetary Physics, 6, 378-384. doi: 10.26464/epp2022033

[14]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[15]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[16]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

[17]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[18]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[19]

Andrew J Barbour, Nicholas M Beeler, 2021: Teleseismic waves reveal anisotropic poroelastic response of wastewater disposal reservoir, Earth and Planetary Physics, 5, 547-558. doi: 10.26464/epp2021034

[20]

ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Case study on stratospheric and mesospheric concentric gravity waves generated by deep convection

GuoChun Shi, Xiong Hu, ZhiGang Yao, WenJie Guo, MingChen Sun, XiaoYan Gong