Citation:
Feng, T., Zhou, C., Wang, X., Liu, M. R. and Zhao, Z. Y. (2020). Evidence of X-mode heating suppressing O-mode heating. Earth Planet. Phys., 4(6), 588–597. http://doi.org/10.26464/epp2020068
2020, 4(6): 588-597. doi: 10.26464/epp2020068
Evidence of X-mode heating suppressing O-mode heating
Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
In this study, we present three experiments carried out at the EISCAT (European Incoherent Scatter Scientific Association) heating facility on October 29 and 30, 2015. The results from the first experiment showed overshoot during the O-mode heating period. The second experiment, which used cold-start X-mode heating, showed the generation of parametric decay instability, whereas overshoot was not observed. The third experiment used power-stepped X-mode heating with noticeable O-mode wave leakage. Parametric decay instability and oscillating two-stream instability were generated at the O-mode reflection height without the overshoot effect, which implies suppression of the thermal parametric instability with X-mode heating. We propose that the electron temperature increased because X-mode heating below the upper hybrid height decreased the growth rate of the thermal parametric instability.
Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Rietveld, M. T., Ivanova, I. M., and Baddeley, L. J. (2011). Artificial small-scale field-aligned irregularities in the high latitude F region of the ionosphere induced by an X-mode HF heater wave. Geophys. Res. Lett., 38(8), L08802. https://doi.org/10.1029/2011GL046724 |
Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Rietveld, M. T., Häggström, I., and Ivanova, I. M. (2013). Plasma modifications induced by an X-mode HF heater wave in the high latitude F region of the ionosphere. J. Atmos. Sol. Terr. Phys., 105-106, 231–244. https://doi.org/10.1016/j.jastp.2012.10.001 |
Blagoveshchenskaya, N. F., Borisova, T. D., Kosch, M., Sergienko, T., Brändström, U., Yeoman, T. K., and Häggström, I. (2014). Optical and ionospheric phenomena at EISCAT under continuous X-mode HF pumping. J. Geophys. Res. Space Phys., 119(12), 10483–10498. https://doi.org/10.1002/2014JA020658 |
Blagoveshchenskaya, N. F., Borisova, T. D., Yeoman, T. K., Häggström, I., and Kalishin, A. S. (2015). Modification of the high latitude ionosphere F region by X-mode powerful HF radio waves: experimental results from multi-instrument diagnostics. J. Atmos. Sol. Terr. Phys., 135, 50–63. https://doi.org/10.1016/j.jastp.2015.10.009 |
Blagoveshchenskaya, N. F., Borisova, T. D., Kalishin, A. S., Yeoman, T. K., and Häggström, I. (2017). First observations of electron gyro-harmonic effects under X-mode HF pumping the high latitude ionospheric F-region. J. Atmos. Sol. Terr. Phys., 155, 36–49. https://doi.org/10.1016/j.jastp.2017.02.003 |
Bryers, C. J., Kosch, M. J., Senior, A., Rietveld, M. T., and Yeoman, T. K. (2013). The thresholds of ionospheric plasma instabilities pumped by high-frequency radio waves at EISCAT. J. Geophys. Res. Space Phys., 118(11), 7472–7481. https://doi.org/10.1002/2013JA019429 |
Fejer, J. A. (1979). Ionospheric modification and parametric instabilities. Rev. Geophys., 17(1), 135–153. https://doi.org/10.1029/RG017i001p00135 |
Frolov, V. L., Kagan, L. M., Sergeev, E. N., Komrakov, G. P., Bernhardt, P. A., Goldstein, J. A., Wagner, L. S., Selcher, C. A., and Stubbe, P. (1999). Ionospheric observations of F region artificial plasma turbulence, modified by powerful X-mode radio waves. J. Geophys. Res. Space Phys., 104(A6), 12695–12704. https://doi.org/10.1029/1998JA900182 |
Frolov, V. L., Sergeev, E. N., Komrakov, G. P., Stubbe, P., Thidé, B., Waldenvik, M., Veszelei, E., and Leyser, T. B. (2004). Ponderomotive narrow continuum (NC p) component in stimulated electromagnetic emission spectra. J. Geophys. Res. Space Phys., 109(A7), A07304. https://doi.org/10.1029/2001JA005063 |
Gustavsson, B., Newsome, R., Leyser, T. B., Kosch, M. J., Norin, L., McCarrick, M., Pedersen, T., and Watkins, B. J. (2009). First observations of X-mode suppression of O-mode HF enhancements at 6300 Å. Geophys. Res. Lett., 36(20), L20102. https://doi.org/10.1029/2009GL039421 |
Inhester, B., Das, A. C., and Fejer, J. A. (1981). Generation of small-scale field-aligned irregularities in ionospheric heating experiments. J. Geophys. Res. Space Phys., 86(A11), 9101–9106. https://doi.org/10.1029/JA086iA11p09101 |
Kuo, S. P., Lee, M. C., and Kossey, P. (1997). Excitation of oscillating two stream instability by upper hybrid pump waves in ionospheric heating experiments at Tromso. Geophys. Res. Lett., 24(23), 2969–2972. https://doi.org/10.1029/97GL03054 |
Kuo, S. P. (2014). Overview of ionospheric modification by High Frequency (HF) heaters-theory. Prog. Electromagn. Res. B, 60, 141–155. https://doi.org/10.2528/PIERB14041805 |
Kuo, S. P. (2015). Ionospheric modifications in high frequency heating experiments. Phys. Plasmas, 22(1), 012901. https://doi.org/10.1063/1.4905519 |
Lee, M. C., and Kuo, S. P. (1983). Excitation of upper-hybrid waves by a thermal parametric instability. J. Plasma Phys., 30(3), 463–478. https://doi.org/10.1017/S002237780000129X |
Lehtinen, M. S., and Huuskonen, A. (1996). General incoherent scatter analysis and GUISDAP. J. Atmos. Terr. Phys., 58(1-4), 435–452. https://doi.org/10.1016/0021-9169(95)00047-X |
Perkins, F. W., Oberman, C., and Valeo, E. J. (1974). Parametric instabilities and ionospheric modification. J. Geophys. Res., 79(10), 1478–1496. https://doi.org/10.1029/JA079i010p01478 |
Robinson, T. R. (1983). The heating of the high lattitude ionosphere by high power radio waves. Phys. Rep., 179(2-3), 79–209. https://doi.org/10.1016/0370-1573(89)90005-7 |
Senior, A., Rietveld, M. T., Häggström, I., and Kosch, M. J. (2013). Radio-induced incoherent scatter ion line enhancements with wide altitude extents in the high-latitude ionosphere. Geophys. Res. Lett., 40(9), 1669–1674. https://doi.org/10.1002/grl.50272 |
Showen, R. L., and Kim, D. M. (1978). Time variations of HF-induced plasma waves. J. Geophys. Res. Space Phys., 83(A2), 623–628. https://doi.org/10.1029/JA083iA02p00623 |
Stubbe, P., Kopka, H., Thidé, B., and Derblom, H. (1984). Stimulated electromagnetic emission: a new technique to study the parametric decay instability in the ionosphere. J. Geophys. Res. Space Phys., 89(A9), 7523–7536. https://doi.org/10.1029/JA089iA09p07523 |
Stubbe, P., Kohl, H., and Rietveld, M. T. (1992). Langmuir turbulence and ionospheric modification. J. Geophys. Res. Space Phys., 97(A5), 6285–6297. https://doi.org/10.1029/91JA03047 |
Stubbe, P. (1996). Review of ionospheric modification experiments at Tromsø. J. Atmos. Terr. Phys., 58(1-4), 349–368. https://doi.org/10.1016/0021-9169(95)00041-0 |
Thidé, B., Sergeev, E. N., Grach, S. M., Leyser, T. B., and Carozzi, T. D. (2005). Competition between Langmuir and upper-hybrid turbulence in a high-frequency-pumped ionosphere. Phys. Rev. Lett., 95(25), 255002. https://doi.org/10.1103/PhysRevLett.95.255002 |
Vas'kov, V. V., and Gurevich, A. V. (1975). Nonlinear resonant instability of a plasma in the field of an ordinary electromagnetic wave. Zhurnal Eksperimentalnoi Teoreticheskoi Fiziki, 69, 176–188. |
Vas'kov, V. V., and Ryabova, N. A. (1998). Parametric excitation of high frequency plasma oscillations in the ionosphere by a powerful extraordinary radio wave. Adv. Space Res., 21(5), 697–700. https://doi.org/10.1016/S0273-1177(97)01006-5 |
Wang, X., Cannon, P., Zhou, C., Honary, F., Ni, B. B., and Zhao, Z. Y. (2016a). A theoretical investigation on the parametric instability excited by X-mode polarized electromagnetic wave at Tromsø. J. Geophys. Res. Space Phys., 121(4), 3578–3591. https://doi.org/10.1002/2016JA022411 |
Wang, X., Zhou, C., Liu, M. R., Honary, F., Ni, B. B., and Zhao, Z. Y. (2016b). Parametric instability induced by X-mode wave heating at EISCAT. J. Geophys. Res. Space Phys., 121(10), 10536–10548. https://doi.org/10.1002/2016JA023070 |
Wang, X., and Zhou, C. (2017). Aspect dependence of Langmuir parametric instability excitation observed by EISCAT. Geophys. Res. Lett., 44(18), 9124–9133. https://doi.org/10.1002/2017GL074743 |
[1] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[2] |
Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025 |
[3] |
LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011 |
[4] |
D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004 |
[5] |
FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022 |
[6] |
Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042 |
[7] |
LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012 |
[8] |
Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025 |
[9] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[10] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[11] |
LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028 |
[12] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[13] |
ChunHua Jiang, Rong Tian, LeHui Wei, GuoBin Yang, ZhengYu Zhao, 2022: Modeling of kilometer-scale ionospheric irregularities at Mars, Earth and Planetary Physics, 6, 213-217. doi: 10.26464/epp2022011 |
[14] |
Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005 |
[15] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[16] |
Tong Dang, JiuHou Lei, WenBin Wang, MaoDong Yan, DeXin Ren, FuQing Huang, 2020: Prediction of the thermospheric and ionospheric responses to the 21 June 2020 annular solar eclipse, Earth and Planetary Physics, 4, 231-237. doi: 10.26464/epp2020032 |
[17] |
ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics, 4, 429-435. doi: 10.26464/epp2020041 |
[18] |
Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029 |
[19] |
Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027 |
[20] |
Claudio Cesaroni, Luca Spogli, Giorgiana De Franceschi, Juliana Garrido Damaceno, Marcin Grzesiak, Bruno Vani, Joao Francisco Galera Monico, Vincenzo Romano, Lucilla Alfonsi, Massimo Cafaro, 2021: A measure of ionospheric irregularities: zonal velocity and its implications for L-band scintillation at low-latitudes, Earth and Planetary Physics, 5, 450-461. doi: 10.26464/epp2021042 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)