Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, K., Hao, X. J., Li, Y. R., Zhang, T. L., Pan, Z. H., Chen, M. M., Hu, X. W., Li, X., Shen, C. L., and Wang, Y. M. (2020). Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1. Earth Planet. Phys., 4(4), 384–389. http://doi.org/10.26464/epp2020058

2020, 4(4): 384-389. doi: 10.26464/epp2020058

Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1

1. 

Chinese Academy of Sciences Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

2. 

Chinese Academy of Sciences Center for Excellence in Comparative Planetology, University of Science and Technology of China, Hefei 230026, China

3. 

Space Research Institute, Austrian Academy of Sciences, Graz, Austria

Corresponding author: TieLong Zhang, tlzhang@ustc.edu.cnYuMing Wang, ymwang@ustc.edu.cn

Received Date: 2020-07-11
Web Publishing Date: 2020-08-03

As one of the seven scientific payloads on board the Tianwen-1 orbiter, the Mars Orbiter Magnetometer (MOMAG) will measure the magnetic fields of and surrounding Mars to study its space environment and the interaction with the solar wind. The instrument consists of two identical triaxial fluxgate magnetometer sensors, mounted on a 3.19 meter-long boom with a seperation of about 90 cm. The dual-magnetometers configuration will help eliminate the magnetic field interference generated by the spacecraft platform and payloads. The sensors are controlled by an electric box mounted inside the orbiter. Each magnetometer measures the ambient vector magnetic field over a wide dynamic range (to 10,000 nT per axis) with a resolution of 1.19 pT. Both magnetometers sample the ambient magnetic field at an intrinsic frequency of 128 Hz, but will operate in a model with alternating frequency between 1 and 32 Hz to meet telemetry allocations.

Key words: Mars, magnetic field, magnetometer, Tianwen-1, spaceflight instrumentation

Acuña, M. H., Connerney, J. E. P., Wasilewski, P., Lin, R. P., Anderson, K. A., Carlson, C. W., McFadden, J., Curtis, D. W., Mitchell, D., … Ness, N. F. (1998). Magnetic field and plasma observations at mars: initial results of the mars global surveyor mission. Science, 279(5357), 1676–1680. https://doi.org/10.1126/science.279.5357.1676

Auster, H. U., Apathy, I., Berghofer, G., Remizov, A., Roll, R., Fornacon, K. H., Glassmeier, K. H., Haerendel, G., Hejja, I., … Waesch, R. (2007). ROMAP: Rosetta magnetometer and plasma monitor. Space Sci. Rev, 128, 221–240. https://doi.org/10.1007/s11214-006-9033-x

Auster, H. U., Glassmeier, K. H., Magnes, W., Aydogar, O., Baumjohann, W., Constantinescu, D., Fischer, D., Fornacon, K. H., Georgescu, E., … Wiedemann, M. (2008). The THEMIS fluxgate magnetometer. Space Sci. Rev., 141(1-4), 235–264. https://doi.org/10.1007/s11214-008-9365-9

Balogh, A. (2010). Planetary magnetic field measurements: missions and instrumentation. Space Sci. Rev., 152(1-4), 23–97. https://doi.org/10.1007/s11214-010-9643-1

Bertucci, C., Mazelle, C., Crider, D.H., Vignes, D., Acuña, M.H., Mitchell, D.L., Lin, R.P. Connerney, J.E.P., Reme, H., Cloutier, P.A., Ness, N.F. and Winterhalter, D. (2003). Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars global surveyor observations. Geophysical Research Letters, 30(2), 1099.

Brain, D. A. (2006). Mars global surveyor measurements of the Martian solar wind interaction. Space Sci. Rev., 126(1-4), 77–112. https://doi.org/10.1007/s11214-006-9122-x

Connerney, J. E. P., Espley, J., Lawton, P., Murphy, S., Odom, J., Oliversen, R., and Sheppard, D. (2015). The MAVEN magnetic field investigation. Space Sci. Rev., 195(1-4), 257–291. https://doi.org/10.1007/s11214-015-0169-4

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Nagy, A. F., and Najib, D. (2014). Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multifluid MHD model and the MTGCM model. Geophys. Res. Lett., 41(8), 2708–2715. https://doi.org/10.1002/2014GL059515

Espley, J. R., Cloutier, P. A., Brain, D. A., Crider, D. H., and Acuña, M. H. (2004). Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region, and tail. J. Geophys. Res. Space Phys., 109(A7), A07213. https://doi.org/10.1029/2003JA010193

Georgescu, E., Auster, H. U., Takada, T., Gloag, J., Eichelberger, H., Fornaçon, K. H., Brown, P., Carr, C. M., and Zhang, T. L. (2008). Modified gradiometer technique applied to Double Star (TC-1). Adv. Space Res., 41(10), 1579–1584. https://doi.org/10.1016/j.asr.2008.01.014

Hedgecock, P. C. (1975). A correlation technique for magnetometer zero level determination. Space Sci. Instrum., 1(1), 83–90.

Leinweber, H. K., Russell, C. T., Torkar, K., Zhang, T. L., and Angelopoulos, V. (2008). An advanced approach to finding magnetometer zero levels in the interplanetary magnetic field. Meas. Sci. Technol., 19(5), 055104. https://doi.org/10.1088/0957-0233/19/5/055104

Ma, Y. J., Nagy, A. F., Sokolov, I. V., and Hansen, K. C. (2004). Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res. Space Phys., 109(A7), A07211. https://doi.org/10.1029/2003JA010367

Magnes, W., Berghofer, G., Mocnik, K., Koren, W., Schwingenschuh, K., Stachel, M., Jernej, I., Riedler, W., Russell, C. T., … Beek, T. J. (1998). A spaceborne magnetometer tested under extended temperature conditions (experiment MAREMF-OS/MARS-96). Meas. Sci. Technol., 9(8), 1219–1228. https://doi.org/10.1088/0957-0233/9/8/013

Müller, M., Lederer, T., Fornacon, K. H., and Schäfer, R. (1998). Grain structure, coercivity and high-frequency noise in soft magnetic Fe-81Ni-6Mo alloys. J. Magn. Magn. Mater., 177-181, 231–232. https://doi.org/10.1016/S0304-8853(97)00672-0

Ness, N. F., Behannon, K. W., Lepping, R. P., and Schatten, K. H. (1971). Use of two magnetometers for magnetic field measurements on a spacecraft. J. Geophys. Res., 76(16), 3564–3573. https://doi.org/10.1029/JA076i016p03564

Neubauer, F. M. (1975). Optimization of multimagnetometer systems on a spacecraft. J. Geophys. Res., 80(22), 3235–3240. https://doi.org/10.1029/JA080i022p03235

Pope, S. (2008). Methods for the detection and correction of magnetic noise in measurements made by magnetic field experiments onboard spacecraft [Ph. D. thesis]. Sheffield: University of Sheffield.

Primdahl, F. (1979). The fluxgate magnetometer. Journal of Physics E: Scientific Instruments, 12, 241–253. https://doi.org/10.1088/0022-3735/12/4/001

Zhang, T. L., Baumjohann, W., Delva, M., Auster, H. U., Balogh, A., Russell, C. T., Barabash, S., Balikhin, M., Berghofer, G., … Lebreton, J. P. (2006). Magnetic field investigation of the Venus plasma environment: expected new results from Venus express. Planet. Space Sci., 54(13-14), 1336–1343. https://doi.org/10.1016/j.pss.2006.04.018

[1]

WeiXing Wan, Chi Wang, ChunLai Li, Yong Wei, JianJun Liu, 2020: The payloads of planetary physics research onboard China’s First Mars Mission (Tianwen-1), Earth and Planetary Physics, 4, 331-332. doi: 10.26464/epp2020052

[2]

YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057

[3]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[4]

AiBing Zhang, LingGao Kong, WenYa Li, Lei Li, BinBin Tang, ZhaoJin Rong, Yong Wei, JiJie Ma, YiTeng Zhang, LiangHai Xie, YuXian Wang, JianSen He, Bin Liu, WenJing Wang, Bin Su, JiaWei Li, Xu Tan, Fang Wang, TaiFeng Jin, FuHao Qiao, Peter Wurz, Yan Zhu, YunFei Bai, YiRen Li, XinBo Zhu, YueQiang Sun, YongLiao Zou, Chi Wang, 2022: Tianwen-1 MINPA observations in the solar wind, Earth and Planetary Physics, 6, 1-9. doi: 10.26464/epp2022014

[5]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[6]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[7]

XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045

[8]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[9]

D. Singh, S. Uttam, 2022: Thermal inertia at the MSL and InSight mission sites on Mars, Earth and Planetary Physics, 6, 18-27. doi: 10.26464/epp2022004

[10]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[11]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[12]

YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026

[13]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[14]

Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005

[15]

GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056

[16]

XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017

[17]

Hao Gu, Jun Cui, ZhaoGuo He, JiaHao Zhong, 2020: A MAVEN investigation of O++ in the dayside Martian ionosphere, Earth and Planetary Physics, 4, 11-16. doi: 10.26464/epp2020009

[18]

Deepak Singh, 2020: Impact of surface Albedo on Martian photochemistry, Earth and Planetary Physics, 4, 206-211. doi: 10.26464/epp2020025

[19]

XiaoShu Wu, Jun Cui, YuTian Cao, WeiQin Sun, Qiong Luo, BinBin Ni, 2020: Response of photoelectron peaks in the Martian ionosphere to solar EUV/X-ray irradiance, Earth and Planetary Physics, 4, 390-395. doi: 10.26464/epp2020035

[20]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang