Citation:
Wang, J. Z., Zhu, Q., Gu, X. D., Fu, S., Guo, J. G., Zhang, X. X., Yi, J., Guo, Y. J., Ni, B. B., and Xiang, Z. (2020). An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements. Earth Planet. Phys., 4(3), 246–265. http://doi.org/10.26464/epp2020034
2020, 4(3): 246-265. doi: 10.26464/epp2020034
An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements
1. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430079, China |
2. | Key Laboratory of Space Weather, National Center for Space Weather, China Meteorological Administration, Beijing 100081, China |
Using wave measurements from the EMFISIS instrument onboard Van Allen Probes, we investigate statistically the spatial distributions of the intensity of plasmaspheric hiss waves. To reproduce these empirical results, we establish a fitting model that is a third-order polynomial function of L-shell, magnetic local time (MLT), magnetic latitude (MLAT), and AE*. Quantitative comparisons indicate that the model’s fitting functions can reflect favorably the major empirical features of the global distribution of hiss wave intensity, including substorm dependence and the MLT asymmetry. Our results therefore provide a useful analytic model that can be readily employed in future simulations of global radiation belt electron dynamics under the impact of plasmaspheric hiss waves in geospace.
Albert, J. M. (1994). Quasi-linear pitch angle diffusion coefficients: Retaining high harmonics. Journal of Geophysical Research, 99(A12), 23,741–23,745. https://doi.org/10.1029/94JA02345 |
Abel, B., and Thorne, R. M. (1998a). Electron scattering loss in Earth's inner magnetosphere: 1. dominant physical processes. J. Geophys. Res. Space Phys., 103(A2), 2385–2396. https://doi.org/10.1029/97JA02919 |
Abel, B., and Thorne, R. M. (1998b). Electron scattering loss in Earth's inner magnetosphere: 2. sensitivity to model parameters. J. Geophys. Res. Space Phys., 103(A2), 2397–2407. https://doi.org/10.1029/97JA02920 |
Agapitov, O., Artemyev, A., Krasnoselskikh, V., Khotyaintsev, Y. V., Mourenas, D., Breuillard, H., Balikhin, M., and Rolland, G. (2013). Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements. J. Geophys. Res. Space Phys., 118(6), 3407–3420. https://doi.org/10.1002/jgra.50312 |
Agapitov, O. V., Artemyev, A. V., Mourenas, D., Kasahara, Y., and Krasnoselskikh, V. (2014). Inner belt and slot region electron lifetimes and energization rates based on AKEBONO statistics of whistler waves. J. Geophys. Res. Space Phys., 119(4), 2876–2893. https://doi.org/10.1002/2014JA019886 |
Bortnik, J., Thorne, R. M., and Meredith, N. P. (2008). The unexpected origin of plasmaspheric hiss from discrete chorus emissions. Nature, 452(7183), 62–66. https://doi.org/10.1038/nature06741 |
He, F., Zhang, X. X., Chen, B., and Fok, M. C. (2011). Reconstruction of the plasmasphere from Moon-based EUV images. J. Geophys. Res. Space Phys., 116(A11), A11203. https://doi.org/10.1029/2010JA016364 |
He, F., Zhang, X. X., Chen, B., Fok, M. C., and Zou, Y. L. (2013). Moon-based EUV imaging of the Earth’s plasmasphere: Model simulations. J. Geophys. Res. Space Phys., 118(11), 7085–7103. https://doi.org/10.1002/2013JA018962 |
He, F., Zhang, X. X., Chen, B., Fok, M. C., and Nakano, S. (2016). Determination of the Earth’s plasmapause location from the CE-3 EUVC images. J. Geophys. Res. Space Phys., 121(1), 296–304. https://doi.org/10.1002/2015JA021863 |
He, F., Zhang, X. X., Lin, R. L., Fok, M. C., Katus, R. M., Liemohn, M. W., Gallagher, D. L., and Nakano, S. (2017). A new solar wind-driven global dynamic plasmapause model: 2. Model and validation. J. Geophys. Res. Space Phys., 122(7), 7172–7187. https://doi.org/10.1002/2017JA023913 |
Hua, M., Ni, B. B., Li, W., Gu, X. D., Fu, S., Shi, R., Xiang, Z., Cao, X., Zhang, W. X., and Guo, Y. J. (2019). Evolution of radiation belt electron pitch angle distribution due to combined scattering by plasmaspheric hiss and magnetosonic waves. Geophys. Res. Lett., 46(6), 3033–3042. https://doi.org/10.1029/2018GL081828 |
Katus, R. M., Gallagher, D. L., Liemohn, M. W., Keesee, A. M., and Sarno-Smith, L. K. (2015). Statistical storm time examination of MLT-dependent plasmapause location derived from IMAGE EUV. J. Geophys. Res. Space Phys, 120(7), 5545–5559. https://doi.org/10.1002/2015JA021225 |
Kim, K. C., Lee, D. Y., and Shprits, Y. (2015). Dependence of plasmaspheric hiss on solar wind parameters and geomagnetic activity and modeling of its global distribution. J. Geophys. Res. Space Phys., 120(2), 1153–1167. https://doi.org/10.1002/2014JA020687 |
Kletzing, C. A., Kurth, W. S., Acuna, M., MacDowall, R. J., Torbert, R. B., Averkamp, T., Bodet, D., Bounds, S. R., Chutter, M., … Tyler, J. (2013). The electric and magnetic field instrument suite and integrated science (EMFISIS) on RBSP. Space Sci. Rev., 179(1–4), 127–181. https://doi.org/10.1007/s11214-013-9993-6 |
Li, L. Y., Cao, J. B., and Zhou, G. C. (2008). Whistler-mode waves modify the high-energy electron slot region and the outer radiation belt. Chinese J. Geophys. (in Chinese) |
Li, W., Thorne, R. M., Bortnik, J., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., … Thaller, S. A. (2013). An unusual enhancement of low-frequency plasmaspheric hiss in the outer plasmasphere associated with substorm-injected electrons. Geophys. Res. Lett., 40(15), 3798–3803. https://doi.org/10.1002/grl.50787 |
Li, W., Chen, L., Bortnik, J., Thorne, R. M., Angelopoulos, V., Kletzing, C. A., Kurth, W. S., and Hospodarsky, G. B. (2015a). First evidence for chorus at a large geocentric distance as a source of plasmaspheric hiss: Coordinated THEMIS and Van Allen Probes observation. Geophys. Res. Lett., 42(2), 241–248. https://doi.org/10.1002/2014GL062832 |
Li, W., Ma, Q., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., and Nishimura, Y. (2015b). Statistical properties of plasmaspheric hiss derived from Van Allen Probes data and their effects on radiation belt electron dynamics. J. Geophys. Res. Space Phys., 120(5), 3393–3405. https://doi.org/10.1002/2015JA021048 |
Lyons, L. R., Thorne, R. M., and Kennel, C. F. (1972). Pitch-angle diffusion of radiation belt electrons within the plasmasphere. J. Geophys. Res., 77(19), 3455–3474. https://doi.org/10.1029/JA077i019p03455 |
Lyons, L. R., and Thorne, R. M. (1973). Equilibrium structure of radiation belt electrons. J. Geophys. Res., 78(13), 2142–2149. https://doi.org/10.1029/JA078i013p02142 |
Meredith, N. P., Horne, R. B., Thorne, R. M., Summers, D., and Anderson, R. R. (2004). Substorm dependence of plasmaspheric hiss. J. Geophys. Res. Space Phys., 109(A6), A06209. https://doi.org/10.1029/2004JA010387 |
Meredith, N. P., Horne, R. B., Clilverd, M. A., Horsfall, D., Thorne, R. M., and Anderson, R. R. (2006a). Origins of plasmaspheric hiss. J. Geophys. Res. Space Phys., 111(A9), A09217. https://doi.org/10.1029/2006JA011707 |
Meredith, N. P., Horne, R. B., Glauert, S. A., Thorne, R. M., Summers, D., Albert, J. M., and Anderson, R. R. (2006b). Energetic outer zone electron loss timescales during low geomagnetic activity. J. Geophys. Res. Space Phys., 111(A5), A05212. https://doi.org/10.1029/2005JA011516 |
Meredith, N. P., Horne, R. B., Glauert, S. A., and Anderson, R. R. (2007). Slot region electron loss timescales due to plasmaspheric hiss and lightning-generated whistlers. J. Geophys. Res. Space Phys., 112(A8), A08214. https://doi.org/10.1029/2007JA012413 |
Mosier, S. R., Kaiser, M. L., and Brown, L. W. (1973). Observations of noise bands associated with the upper hybrid resonance by the IMP 6 radio astronomy experiment. J. Geophys. Res., 78(10), 1673–1679. https://doi.org/10.1029/JA078i010p01673 |
Ni, B. B., Bortnik, J., Thorne, R. M., Ma, Q. L., and Chen, L. J. (2013). Resonant scattering and resultant pitch angle evolution of relativistic electrons by plasmaspheric hiss. J. Geophys. Res. Space Phys., 118(12), 7740–7751. https://doi.org/10.1002/2013JA019260 |
Ni, B. B., Li, W., Thorne, R. M., Bortnik, J., Ma, Q. L., Chen, L. J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., … Claudepierre, S. G. (2014). Resonant scattering of energetic electrons by unusual low-frequency hiss. Geophys. Res. Lett., 41(6), 1854–1861. https://doi.org/10.1002/2014GL059389 |
Ni, B. B., Hua, M., Zhou, R. X., Yi, J., and Fu, S. (2017). Competition between outer zone electron scattering by plasmaspheric hiss and magnetosonic waves. Geophys. Res. Lett., 44(8), 3465–3474. https://doi.org/10.1002/2017GL072989 |
Ni, B. B., Huang, H., Zhang, W. X., Gu, X. D., Zhao, H., Li, X. L., Baker, D., Fu, S., Xiang, Z., and Cao, X. (2019). Parametric sensitivity of the formation of reversed electron energy spectrum caused by plasmaspheric hiss. Geophys. Res. Lett., 46(8), 4134–4143. https://doi.org/10.1029/2019gl082032 |
Orlova, K., Spasojevic, M., and Shprits, Y. (2014). Activity-dependent global model of electron loss inside the plasmasphere. Geophys. Res. Lett., 41(11), 3744–3751. https://doi.org/10.1002/2014GL060100 |
Santolík, O., Parrot, M., Storey, L. R. O., Pickett, J. S., and Gurnett, D. A. (2001). Propagation analysis of plasmaspheric hiss using Polar PWI measurements. Geophys. Res. Lett., 28(6), 1127–1130. https://doi.org/10.1029/2000GL012239 |
Shi, R., Li, W., Ma, Q. L., Reeves, G. D., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Spence, H. E., Blake, J. B., … Claudepierre, S. G. (2017). Systematic evaluation of low-frequency hiss and energetic electron injections. J. Geophys. Res. Space Phys., 122(10), 10263–10274. https://doi.org/10.1002/2017JA024571 |
Smith, E. J., Frandsen, A. M. A., Tsurutani, B. T., Thorne, R. M., and Chan, K. W. (1974). Plasmaspheric hiss intensity variations during magnetic storms. J. Geophys. Res., 79(16), 2507–2510. https://doi.org/10.1029/JA079i016p02507 |
Spasojevic, M., Shprits, Y. Y., and Orlova, K. (2015). Global empirical models of plasmaspheric hiss using Van Allen Probes. J. Geophys. Res. Space Phys., 120(12), 10370–10383. https://doi.org/10.1002/2015JA021803 |
Summers, D., Ni, B. B., and Meredith, N. P. (2007a). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res. Space Phys., 112(A4), A04206. https://doi.org/10.1029/2006JA011801 |
Summers, D., Ni, B. B., and Meredith, N. P. (2007b). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and electromagnetic ion cyclotron waves. J. Geophys. Res. Space Phys., 112(A4), A04207. https://doi.org/10.1029/2006JA011993 |
Thorne, R. M., Smith, E. J., Burton, R. K., and Holzer, R. E. (1973). Plasmaspheric hiss. J. Geophys. Res. Space Phys., 78(10), 1581–1596. https://doi.org/10.1029/JA078i010p01581 |
Thorne, R. M., Smith, E. J., Fiske, K. J., and Church, S. R. (1974). Intensity variation of ELF hiss and chorus during isolated substorms. Geophys. Res. Lett., 1(5), 193–196. https://doi.org/10.1029/GL001i005p00193 |
Thorne, R. M., Church, S. R., and Gorney, D. J. (1979). On the origin of plasmaspheric hiss: The importance of wave propagation and the plasmapause. J. Geophys. Res. Space Phys., 84(A9), 5241–5247. https://doi.org/10.1029/JA084iA09p05241 |
Tsurutani, B. T., Falkowski, B. J., Pickett, J. S., Santolik, O., and Lakhina, G. S. (2015). Plasmaspheric hiss properties: Observations from Polar. J. Geophys. Res. Space Phys., 120(1), 414–431. https://doi.org/10.1002/2014JA020518 |
Verbanac, G., Pierrard, V., Bandić, M., Darrouzet, F., Rauch, J. L., and Décréau, P. (2015). The relationship between plasmapause, solar wind and geomagnetic activity between 2007 and 2011. Ann. Geophys., 33(10), 1271–1283. https://doi.org/10.5194/angeo-33-1271-2015 |
Xiang, Z., Tan, J. Q., Ni, B. B., Gu, X. D., Cao, X., Zou, Z. Y., Zhou, C., Fu, S., Shi, R., … Wang, H. (2017). A statistical analysis of the global distribution of plasmaspheric hiss based on Van Allen Probes wave observations. Acta Phys. Sin. (in Chinese) |
Yu, J., Li, L. Y., Cao, J. B., Chen, L., Wang, J., and Yang, J. (2017). Propagation characteristics of plasmaspheric hiss: Van Allen Probe observations and global empirical models. J. Geophys. Res. Space Phys., 122(4), 4156–4167. https://doi.org/10.1002/2016JA023372 |
Zhang, X. X., He, F., Lin, R. L., Fok, M. C., Katus, R. M., Liemohn, M. W., Gallagher, D. L., and Nakano, S. (2017a). A new solar wind-driven global dynamic plasmapause model: 1. Database and statistics. J. Geophys. Res. Space Phys., 122(7), 7153–7171. https://doi.org/10.1002/2017JA023912 |
Zhang, X. X., He, F., Chen, B., Shen, C., and Wang, H. N. (2017b). Correlations between plasmapause evolutions and auroral signatures during substorms observed by Chang’e-3 EUV Camera. Earth Planet. Phys., 1(1), 35–43. https://doi.org/10.26464/epp2017005 |
Zhao, H., Ni, B., Li, X., Baker, D. N., Johnston, W. R., Zhang, W., Xiang, Z., Gu, X., Jaynes, A. N., … Boyd, A. J. (2019). Plasmaspheric hiss waves generate a reversed energy spectrum of radiation belt electrons. Nat. Phys., 15(4), 367–372. https://doi.org/10.1038/s41567-018-0391-6 |
[1] |
XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001 |
[2] |
ChaoLing Tang, Xu Wang, BinBin Ni, ZhengPeng Su, JiChun Zhang, 2022: The 600 keV electron injections in the Earth’s outer radiation belt: A statistical study, Earth and Planetary Physics, 6, 149-160. doi: 10.26464/epp2022012 |
[3] |
Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019 |
[4] |
Xiao Liu, JiYao Xu, Jia Yue, 2020: Global static stability and its relation to gravity waves in the middle atmosphere, Earth and Planetary Physics, 4, 504-512. doi: 10.26464/epp2020047 |
[5] |
TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004 |
[6] |
YunXiang Song, ChuXin Chen, 2022: Observation evidence for the entropy switch model of substorm onset, Earth and Planetary Physics, 6, 161-176. doi: 10.26464/epp2022020 |
[7] |
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028 |
[8] |
JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019 |
[9] |
TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026 |
[10] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics. doi: 10.26464/epp2022036 |
[11] |
YaoKun Li, JiPing Chao, 2022: A two-dimensional energy balance climate model on Mars, Earth and Planetary Physics, 6, 284-293. doi: 10.26464/epp2022026 |
[12] |
LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016 |
[13] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
[14] |
Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054 |
[15] |
Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007 |
[16] |
XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045 |
[17] |
JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038 |
[18] |
Paul Gautier Kamto, Cyrille Mezoue Adiang, Severin Nguiya, Joseph Kamguia, Loudi Yap, 2020: Refinement of Bouguer anomalies derived from the EGM2008 model, impact on gravimetric signatures in mountainous region: Case of Cameroon Volcanic Line, Central Africa, Earth and Planetary Physics, 4, 639-650. doi: 10.26464/epp2020065 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)