Citation:
Yi, J., Gu, X. D., Cheng, W., Tang, X. Y., Chen, L., Ni, B. B., Zhou, R. X., Zhao, Z. Y., Wang, Q., and Zhou, L. Q. (2020). A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters. Earth Planet. Phys., 4(3), 238–245. http://doi.org/10.26464/epp2020023
2020, 4(3): 238-245. doi: 10.26464/epp2020023
A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: 2. Occurrence features and associated ionospheric parameters
1. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
2. | State Key Laboratory of Space Weather, Chinese Academy of Sciences, Beijing 100190, China |
As a companion paper to
Abarca, S. F., Corbosiero, K. L., and Galarneau, Jr. T. J. (2010). An evaluation of the Worldwide Lightning Location Network (WWLLN) using the National Lightning Detection Network (NLDN) as ground truth. J. Geophys. Res. Atmos., 115(D18), D18206. https://doi.org/10.1029/2009JD013411 |
Budden, K. G. (1961). The Wave-Guide Mode Theory of Wave Propagation. Englewood Cliffs, New Jersey: Prentice-Hall.222 |
Chen, Y. P., Yang, G. B., Ni, B. B., Zhao, Z. Y., Gu, X. D., Zhou, C., and Wang, F. (2016). Development of ground-based ELF/VLF receiver system in Wuhan and its first results. Adv. Space Res., 57(9), 1871–1880. https://doi.org/10.1016/j.asr.2016.01.023 |
Chen, Y. P., Ni, B. B., Gu, X. D., Zhao, Z. Y., Yang, G. B., Zhou, C., and Zhang, Y. N. (2017). First observations of low latitude whistlers using WHU ELF/VLF receiver system. Sci. China Technol. Sci., 60(1), 166–174. https://doi.org/10.1007/s11431-016-6103-5 |
Helliwell, R. A. (1965). Whistlers and Related Ionospheric Phenomena. Stanford: Stanford University Press.222 |
Hepburn, F. (1959). Interpretation of smooth type atmospheric waveforms. J. Atmos. Terr. Phy., 14(3-4), 262–272. https://doi.org/10.1016/0021-9169(59)90038-8 |
Hutchins, M. L., Holzworth, R. H., Rodger, C. J., and Brundell, J. B. (2012). Far-field power of lightning strokes as measured by the world wide lightning location network. J. Atmos. Oceanic Technol., 29(8), 1102–1110. https://doi.org/10.1175/jtech-d-11-00174.1 |
Kumar, S., Dixit, S. K., and Gwal, A. K. (1994). Propagation of tweek atmospherics in the earth-ionosphere wave guide. Il Nuovo Cimento C, 17(3), 275–280. https://doi.org/10.1007/BF02509168 |
Kumar, S., Kishore, A., and Ramachandran, V. (2008). Higher harmonic tweek sferics observed at low latitude: estimation of VLF reflection heights and tweek propagation distance. Ann. Geophys., 26(6), 1451–1459. https://doi.org/10.5194/angeo-26-1451-2008 |
Kumar, S., Deo, A., and Ramachandran, V. (2009). Nighttime D-region equivalent electron density determined from tweek sferics observed in the South Pacific Region. Earth Planets Space, 61(7), 905–911. https://doi.org/10.1186/BF03353201 |
Maurya, A. K., Singh, R., Veenadhari, B., Pant, P., and Singh, A. K. (2010). Application of lightning discharge generated radio atmospherics/tweeks in lower ionospheric plasma diagnostics. J. Phys. Conf. Ser., 208(1), 012061. https://doi.org/10.1088/1742-6596/208/1/012061 |
Maurya, A. K., Singh, R., Veenadhari, B., Kumar S., Cohen, M. B., Selvakumaran, R., Pant, P., Singh, A. K., Siingh, D., Inan, U. S. (2012a). Morphological features of tweeks and nighttime D region ionosphere at tweek reflection height from the observations in the low-latitude Indian sector. J. Geophys. Res. Space Phys., 117(A5), A05301. https://doi.org/10.1029/2011JA016976 |
Maurya, A. K., Veenadhari, B., Singh, R., Kumar, S., Cohen, M. B., Selvakumaran, R., Gokani, S., Pant, P., Singh, A. K., and Inan, U. S. (2012b). Nighttime D region electron density measurements from ELF-VLF tweek radio atmospherics recorded at low latitudes. J. Geophys. Res. Space Phys., 117(A11), A11308. https://doi.org/10.1029/2012ja017876 |
Ohya, H., Nishino, M., Murayama, Y., and Igarashi, K. (2003). Equivalent electron densities at reflection heights of tweek atmospherics in the low-middle latitude D-region ionosphere. Earth Planets Space, 55(10), 627–635. https://doi.org/10.1186/BF03352469 |
Ohya, H., Shiokawa, K., and Miyoshi, Y. (2008). Development of an automatic procedure to estimate the reflection height of tweek atmospherics. Earth Planets Space, 60(8), 837–843. https://doi.org/10.1186/BF03352835 |
Ohya, H., Shiokawa, K., and Miyoshi, Y. (2011). Long-term variations in tweek reflection height in the D and lower E regions of the ionosphere. J. Geophys. Res. Space Phys., 116, A10322. https://doi.org/10.1029/2011JA016800 |
Ohya, H., Tsuchiya, F., Nakata, H., Shiokawa, K., Miyoshi, Y., Yamashita, K., and Takahashi, Y. (2012). Reflection height of daytime tweek atmospherics during the solar eclipse of 22 July 2009. J. Geophys. Res. Space Phys., 117(A11), A11310. https://doi.org/10.1029/2012JA018151 |
Ohya, H., Shiokawa, K., and Miyoshi, Y. (2015). Daytime tweek atmospherics. J. Geophys. Res. Space Phys., 120(1), 654–665. https://doi.org/10.1002/2014JA020375 |
Outsu, J. (1960). Numerical study of tweeks based on waveguide mode theory. Proc. Res. Inst. Atmos., 7, 58–71. |
Ramachandran, V., Prakash, J. N., Deo, A., and Kumar, S. (2007). Lightning stroke distance estimation from single station observation and validation with WWLLN data. Ann. Geophys., 25(7), 1509–1517. https://doi.org/10.5194/angeo-25-1509-2007 |
Rodger, C. J., Brundell J. B., Dowden, R. L., and Thomson, N. R. (2004). Location accuracy of long distance VLF lightning location network. Ann. Geophys., 22(3), 747–758. https://doi.org/10.5194/angeo-22-747-2004 |
Shariff, K. K. M., Salut, M. M., Abdullah, M., and Graf, K. L. (2011). Investigation of the D-region ionosphere characteristics using tweek atmospherics at low latitudes. In Proceedings of 2011 IEEE International Conference on Space Science and Communication. Penang, Malaysia: IEEE. https://doi.org/10.1109/IConSpace.2011.6015867222 |
Shvets, A. V., and Hayakawa, M. (1998). Polarisation effects for tweek propagation. J. Atmos. Sol. -Terr. Phys., 60(4), 461–469. https://doi.org/10.1016/S1364-6826(97)00131-4 |
Singh, R., Veenadhari, B., Maurya, A. K., Cohen, M. B., Kumar, S., Selvakumaran, R., Pant, P., Singh, A. K., and Inan, U. S. (2011). D-region ionosphere response to the total solar eclipse of 22 July 2009 deduced from ELF-VLF tweek observations in the Indian sector. J. Geophys. Res. Space Phys., 116(A10), A10301. https://doi.org/10.1029/2011JA016641 |
Yano, S., Ogawa, T., and Hagino, H. (1991). Dispersion characteristics and waveform analysis of tweek atmospherics. In H. Kikuchi (Ed.), Environmental and Space Electromagnetics (pp. 227-236). Tokyo: Springer. https://doi.org/10.1007/978-4-431-68162-5_23222 |
Yi, J., Gu, X. D., Li, Z. P., Lin, R. T., Cai, Y. H., Chen, L., Ni, B. B., and Yue, X. A. (2019). Modeling and analysis of NWC signal propagation amplitude based on LWPC and IRI models. Chinese J. Geophys. (in Chinese) |
Yusop, N., Ya'Acob, N., Shariff, K. K. M., Yusof, A. L., Ali, M. T., Idris, A., and Ali, D. M. (2013). Nighttime D-region ionosphere characteristics from tweek atmospherics observed in the North America Region. In 2012 IEEE Asia-Pacific Conference on Applied Electromagnetics (APACE). Melaka, Malaysia: IEEE. https://doi.org/10.1109/APACE.2012.6457641222 |
Zhou, R. X., Gu, X. D., Ni, B. B., Yi, J., Chen, L., Zhao, F. T., Zhao, Z. Y., Wang, Q., and Zhou, L. Q. (2020). A detailed investigation of low latitude tweek atmospherics observed by WHU ELF/VLF receiver: 1. Automatic detection and analysis method. Earth Planet. Phys. (in press).222 |
[1] |
JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027 |
[2] |
FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043 |
[3] |
RuoXian Zhou, XuDong Gu, KeXin Yang, GuangSheng Li, BinBin Ni, Juan Yi, Long Chen, FuTai Zhao, ZhengYu Zhao, Qi Wang, LiQing Zhou, 2020: A detailed investigation of low latitude tweek atmospherics observed by the WHU ELF/VLF receiver: I. Automatic detection and analysis method, Earth and Planetary Physics, 4, 120-130. doi: 10.26464/epp2020018 |
[4] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036 |
[5] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
[6] |
Ying Xiong, Lun Xie, SuiYan Fu, BinBin Ni, ZuYin Pu, 2021: Non-storm erosion of MeV electron outer radiation belt down to L* < 4.0 associated with successive enhancements of solar wind density, Earth and Planetary Physics, 5, 581-591. doi: 10.26464/epp2021051 |
[7] |
HuiJun Le, LiBo Liu, YiDing Chen, Hui Zhang, 2019: Anomaly distribution of ionospheric total electron content responses to some solar flares, Earth and Planetary Physics, 3, 481-488. doi: 10.26464/epp2019053 |
[8] |
Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025 |
[9] |
Qiu-Gang Zong, Hui Zhang, 2018: In situ detection of the electron diffusion region of collisionless magnetic reconnection at the high-latitude magnetopause, Earth and Planetary Physics, 2, 231-237. doi: 10.26464/epp2018022 |
[10] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[11] |
ZuXiang Xue, ZhiGang Yuan, XiongDong Yu, ShiYong Huang, Zheng Qiao, 2021: Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves, Earth and Planetary Physics, 5, 32-41. doi: 10.26464/epp2021008 |
[12] |
Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007 |
[13] |
XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001 |
[14] |
Ya Huang, Lei Dai, Chi Wang, RongLan Xu, Liang Li, 2021: A new inversion method for reconstruction of plasmaspheric He+ density from EUV images, Earth and Planetary Physics, 5, 218-222. doi: 10.26464/epp2021020 |
[15] |
YaLu Wang, XueMin Zhang, XuHui Shen, 2018: A study on the energetic electron precipitation observed by CSES, Earth and Planetary Physics, 2, 538-547. doi: 10.26464/epp2018052 |
[16] |
YuTian Cao, Jun Cui, BinBin Ni, XiaoShu Wu, Qiong Luo, ZhaoGuo He, 2020: Bidirectional electron conic observations for photoelectrons in the Martian ionosphere, Earth and Planetary Physics, 4, 403-407. doi: 10.26464/epp2020037 |
[17] |
Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002 |
[18] |
ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033 |
[19] |
Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052 |
[20] |
YuGuang Ye, Hong Zou, Qiu-Gang Zong, HongFei Chen, JiQing Zou, WeiHong Shi, XiangQian Yu, WeiYing Zhong, YongFu Wang, YiXin Hao, ZhiYang Liu, XiangHong Jia, Bo Wang, XiaoPing Yang, XiaoYun Hao, 2021: Energetic electron detection packages on board Chinese navigation satellites in MEO, Earth and Planetary Physics, 5, 158-179. doi: 10.26464/epp2021021 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)