Citation:
Wang, Y. L., Xie, T., An, Y. R., Yue, C., Wang, J. Y., Yu, C., Yao, L., and Lu, J. (2019). Characteristics of the coseismic geomagnetic disturbances recorded during the 2008
M
w 7.9 Wenchuan Earthquake and two unexplained problems. Earth Planet. Phys., 3(5), 435–443.. http://doi.org/10.26464/epp2019043
2019, 3(5): 435-443. doi: 10.26464/epp2019043
Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems
1. | China Earthquake Networks Center, Beijing 100045, China |
2. | Institute of Geophysics, China Earthquake Administration, Beijing 100081, China |
3. | Earthquake Observatory of Dalian, Liaoning Province, Dalian 116012, China |
Twenty-seven FHDZ-M15 combined geomagnetic observation systems (each of which is equipped with a fluxgate magnetometer and a proton magnetometer) had been installed in the China geomagnetic network before the 2008 Wenchuan earthquake, during which coseismic disturbances were recorded by 26 fluxgate magnetometer observatories. The geomagnetic disturbances have similar spatial and temporal patterns to seismic waves, except for various delays. Six proton magnetometer observatories recorded coseismic disturbances with very small amplitudes. In addition, fluxgate magnetometers registered large-amplitude disturbances that are likely to have included responses to seismic waves. However, two problems remain unresolved. First, why do these geomagnetic disturbances always arrive later than P waves? Second, why do the geomagnetic disturbances have spatial and temporal directivity similar to the main rupture direction of the earthquake? Solving these two problems may be crucial to find the mechanism responsible for generating these geomagnetic anomalies.
Cha, N., Sun, Y. M., Yin, Y. N., and Wang, X. R. (2016). The geomagnetic coseismic effect of strong earthquake of Dalian Geomagnetic station in Liaoning. J. Dis. Prev. Reduct. (in Chinese) |
Eleman, F. (1966). The response of magnetic instruments to earthquake waves. J. Geomag. Geoelectr., 18(1), 43–72. https://doi.org/10.5636/jgg.18.43 |
Gao, Y., X., Chen, X. F., Hu, H. S., Wen, J., Tang, J., and Fang, G. Q. (2014). Induced electromagnetic field by seismic waves in Earth’s magnetic field. J. Geophys. Res.: Solid Earth, 119(7), 5651–5682. https://doi.org/10.1002/2014JB010962 |
Gladychev, V., Baransky, L., Schekotov, A., Fedorov, E., Pokhotelov, O., Andreevsky, S., Rozhnoi, A., Khabazin, Y., Belyaev, G., Noda, Y. (2002). Some preliminary results of seismo-electromagnetic research at Complex Geophysical Observatory, Kamchatka. In M. Hayakawa, et al. (Eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling (pp. 421-432). Tokyo: TERRAPUB.222 |
Honkura, Y., Matsushima, M., Oshiman, N., Tunçer, M. K., Bariş, Ş., Ito, A., Iio, Y., and Işikara, A. M. (2002). Small electric and magnetic signals observed before the arrival of seismic wave. Earth, Planets Space, 54(12), e9–e12. https://doi.org/10.1186/BF03352449 |
Huang, Q. H., and Sobolev, G. A. (2002). Precursory seismicity changes associated with the Nemuro Peninsula earthquake, January 28, 2000. J. Asian Earth Sci., 21(2), 135–146. https://doi.org/10.1016/S1367-9120(02)00032-9 |
Huang, Q. H. (2004). Application of electromagnetism in earthquake research. Oil Geophys. Prospect. (in Chinese) |
Iyemori, T., Kamei, T., Tanaka, Y., Takeda, M., Hashimoto, T., Araki, T., and Oshiman, N. (1996). Co-seismic geomagnetic variations observed at the 1995 Hyogoken-Nanbu earthquake. J. Geomag. Geoelectr., 48(8), 1059–1070. https://doi.org/10.5636/jgg.48.1059 |
Johnston, M. J. S. (1974). Preliminary results from a search for regional tectonomagnetic effects in California and western Nevada. Tectonophysics, 23(3), 267–275. https://doi.org/10.1016/0040-1951(74)90026-2 |
Johnston, M. J. S., Mueller, R. J., Ware, R. H., and Davis, P. M. (1984). Precision of geomagnetic field measurements in a tectonically active region. J. Geomag. Geoelectr., 36(13), 83–95. https://doi.org/10.5636/jgg.36.83 |
Molchanov, O., Kulchitsky, A., and Hayakawa, M. (2002). ULF emission due to inductive seismo-electromagnetic effect. In M. Hayakawa, et al. (Eds.), Seismo Electromagnetics: Lithosphere-Atmosphere-Ionosphere Coupling (pp. 153-162). Tokyo: TERRAPUB.222 |
Nagao, H., Iyemori, T., Higuchi, T., and Araki, T. (2003). Lower mantle conductivity anomalies estimated from geomagnetic jerks. J. Geophys. Res.: Solid Earth, 108(B5), 2254. https://doi.org/10.1029/2002JB001786 |
Nagao, T., Orihara, Y., Yamaguchi, T., Takahashi, I., Hattori, K., Noda, Y., Sayanagi, K., and Uyeda, S. (2000). Co-seismic geoelectric potential changes observed in Japan. Geophys. Res. Lett., 27(10), 1535–1538. https://doi.org/10.1029/1999GL005440 |
Okubo, K., Takeuchi, N., Utsugi, M., Yumoto, K., and Sasai, Y. (2011). Direct magnetic signals from earthquake rupturing: Iwate-Miyagi earthquake of M 7.2. Japan. Earth Planet. Sci. Lett., 305(1-2), 65–72. https://doi.org/10.1016/j.jpgl.2011.02.042 |
Park, S., Johnston, M. J. S., Madden, T. R., Morgan, F. D., and Morrison, H. F. (1993). Electromagnetic precursors to earthquakes in the Ulf band: a review of observations and mechanisms. Rev. Geophys., 31(2), 117–132. https://doi.org/10.1029/93RG00820 |
Piil-Henriksen, J., Merayo, J. M. G., Nielsen, O. V., Petersen, H., Raagaard Petersen, J., and Primdahl, F. (1996). Digital detection and feedback fluxgate magnetometer. Meas. Sci. Technol., 7(6), 897–903. https://doi.org/10.1088/0957-0233/7/6/006 |
Reid, H. F. (1914). The free and forced vibrations of a suspended magnet: 1 Theory . Terr. Atmos. Electr., 19(2), 57–72. https://doi.org/10.1029/TE019i002p00057 |
Ren, H. X., Huang, Q. H., and Chen, X. F. (2010a). Analytical regularization of the high-frequency instability problem in numerical simulation of seismoelectric wave-fields in multi-layered porous media. Chinese. J. Geophys. (in Chinese) |
Ren, H. X., Huang, Q. H., and Chen, X. F. (2010b). A new numerical technique for simulating the coupled seismic and electromagnetic waves in layered porous media. Earthq. Sci., 23(2), 167–176. https://doi.org/10.1007/s11589-009-0071-9 |
Ren, H. X., Chen, X. F., and Huang, Q. H. (2012). Numerical simulation of coseismic electromagnetic fields associated with seismic waves due to finite faulting in porous media. Geophys. J. Int., 188(3), 925–944. https://doi.org/10.1111/j.1365-246X.2011.05309.x |
Tang, J., Zhan, Y., Wang, L. F., Xu, J. L., Zhao, G. Z., Chen, X. B., Dong, Z. Y., Xiao, Q. B., Wang, J. J., … Xu, G. J. (2008). Coseismic signal associated with aftershock of the Ms 8.0 Wenchuan earthquake. Seismol. Geol. (in Chinese) |
Tang, J., Zhan, Y., Wang, L. F., Dong, Z. Y., Zhao, G. Z., and Xu, J. L. (2010). Electromagnetic coseismic effect associated with aftershock of Wenchuan Ms8.0 earthquake. Chinese J. Geophys., |
Xu, W. Y. (2003). Geomagnetism (pp. 221-287) (in Chinese). Beijing: Earthquake Publishing House.222 |
Zhao, B. Q., and Hao, Y. Q. (2015). Ionospheric and geomagnetic disturbances caused by the 2008 Wenchuan earthquake: a revisit. J. Geophys. Res.: Space Phys., 120(7), 5758–5777. https://doi.org/10.1002/2015JA021035 |
[1] |
XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017 |
[2] |
Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047 |
[3] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[4] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[5] |
Mei Li, Li Yao, YaLi Wang, Michel Parrot, Masashi Hayakawa, Jun Lu, HanDong Tan, Tao Xie, 2019: Anomalous phenomena in DC–ULF geomagnetic daily variation registered three days before the 12 May 2008 Wenchuan MS 8.0 earthquake, Earth and Planetary Physics, 3, 330-341. doi: 10.26464/epp2019034 |
[6] |
Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044 |
[7] |
Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058 |
[8] |
Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029 |
[9] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
[10] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[11] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[12] |
Xu Zhou, XinAn Yue, Han-Li Liu, Yong Wei, YongXin Pan, 2021: Response of atmospheric carbon dioxide to the secular variation of weakening geomagnetic field in whole atmosphere simulations, Earth and Planetary Physics, 5, 327-336. doi: 10.26464/epp2021040 |
[13] |
LeLin Xing, ZiWei Liu, JianGang Jia, ShuQing Wu, ZhengSong Chen, XiaoWei Niu, 2021: Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in China continent, Earth and Planetary Physics, 5, 141-148. doi: 10.26464/epp2021018 |
[14] |
Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026 |
[15] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[16] |
Jing Wang, XiaoJun Xu, Jiang Yu, YuDong Ye, 2020: South-north asymmetry of proton density distribution in the Martian magnetosheath, Earth and Planetary Physics, 4, 32-37. doi: 10.26464/epp2020003 |
[17] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[18] |
ChunQin Wang, Zheng Chang, XiaoXin Zhang, GuoHong Shen, ShenYi Zhang, YueQiang Sun, JiaWei Li, Tao Jing, HuanXin Zhang, Ying Sun, BinQuan Zhang, 2020: Proton belt variations traced back to Fengyun-1C satellite observations, Earth and Planetary Physics, 4, 611-618. doi: 10.26464/epp2020069 |
[19] |
Bin Zhuang, YuMing Wang, ChengLong Shen, Rui Liu, 2018: A statistical study of the likelihood of a super geomagnetic storm occurring in a mild solar cycle, Earth and Planetary Physics, 2, 112-119. doi: 10.26464/epp2018012 |
[20] |
Tian Tian, Zheng Chang, LingFeng Sun, JunShui Bai, XiaoMing Sha, Ze Gao, 2019: Statistical study on interplanetary drivers behind intense geomagnetic storms and substorms, Earth and Planetary Physics, 3, 380-390. doi: 10.26464/epp2019039 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)