Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242.

2019, 3(3): 232-242. doi: 10.26464/epp2019025


Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography

State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration, Beijing 100029, China

Corresponding author: Biao Guo,

Received Date: 2018-11-22
Web Publishing Date: 2019-02-01

The Qilian Orogen Zone (QOZ), located in the north margin of the Tibetan Plateau, is the key area for understanding the deformation and dynamics process of Tibet. Numerous geological and geophysical studies have been carried out on the mechanics of the Tibetan Plateau deformation and uplift; however, the detailed structure and deformation style of the Qilian Orogen Zone have remained uncertain due to poor geophysical data coverage and limited resolution power of inversion algorithms. In this study, we analyze the P-wave velocity structure beneath the Qilian Orogen Zone, obtained by applying multi-scale seismic tomography technique to P-wave arrival time data recorded by regional seismic networks. The seismic tomography algorithm used in this study employs sparsity constraints on the wavelet representation of the velocity model via L1-norm regularization. This algorithm can deal efficiently with uneven-sampled volumes, and can obtain multi-scale images of the velocity model. Our results can be summarized as follows: (1) The crustal velocity structure is strongly inhomogeneous and consistent with the surface geological setting. Significant low-velocity anomalies exist in the crust of northeastern Tibet, and slight high-velocity anomalies exist beneath the Qaidam Basin and Alxa terrane. (2) The Qilian Orogen Zone can be divided into two main parts by the Laji Shan Faults: the northwestern part with a low-velocity feature, and the southeastern part with a high-velocity feature at the upper and middle crust. (3) Our tomographic images suggest that northwestern and southeastern Qilian Orogen Zones have undergone different tectonic processes. In the northwest Qilian Orogen Zone, the deformation and growth of the Northern Tibetan Plateau has extended to the Heli Shan and Beida Shan region by northward over-thrusting at the upper crust and thickening in the lower crust. We speculate that in the southeast Qilian Orogen Zone the deformation and growth of the Northern Tibet Plateau were of strike-slip style at the upper crust; in the lower crust, the evidence suggests ductile shear extrusion style and active frontage extension to the Alxa terrane. (4) The multi-scale seismic tomography technique provides multi-scale analysis and sparse constraints, which has allowed to us obtain stable, high-resolution results.

Key words: Qilian Orogen Zone, crustal structure, multi-scale seismic tomography

Bao, X. W., Song, X. D., Xu, M. J., Wang, L. S., Sun, X. X., Mi, N., Yu, D. Y., and Li, H. (2013). Crust and upper mantle structure of the North China Craton and the NE Tibetan Plateau and its tectonic implications. Earth Planet. Sci. Lett., 369–370, 129–137.

Becker, T. W., Lebedev, S., and Long, M. D. (2012). On the relationship between azimuthal anisotropy from shear wave splitting and surface wave tomography. J. Geophys. Res., 117(B1), B01306.

Burchfiel, B. C., Molnar, P., Zhao, Z. Y., Liang, K. Y., Wang, S. J., Huang, M. M., Sutter, J. (1989). Geology of the Ulugh Muztagh area, northern Tibet. Earth Planet. Sci. Lett., 94(1-2), 57–70.

Burchfiel, B. C., Zhang, P. Z., Wang, Y. P., Zhang, W. Q., Song, F. M., Deng, Q. D., Molnar, P., and Royden, L. (1991). Geology of the Haiyuan fault zone, Ningxia-Hui Autonomous Region, China, and its relation to the evolution of the northeastern margin of the Tibetan Plateau. Tectonics, 10(6), 1091–1110.

Chang, L. J., Ding, Z. F., Wang, C. Y., and Flesch, L. M. (2017). Vertical coherence of deformation in lithosphere in the NE margin of the Tibetan plateau using GPS and shear-wave splitting data. Tectonophysics, 699, 93–101.

Chen, J. H., Liu, Q. Y., Li, S. C., Guo, B., and Lai, Y. G. (2005). Crust and upper mantle S-wave velocity structure across Northeastern Tibetan Plateau and Ordos block. Chinese J. Geophys., 48(2), 369–379.

Chen, M., Niu, F. L., Tromp, J., Lenardic, A., Lee, C. T. A., Cao, W. R., and Ribeiro, J. (2017). Lithospheric foundering and underthrusting imaged beneath Tibet. Nat. Commun., 8, 15659.

Cheng, B., Cheng, S. Y., Zhang, G. W., and Zhao, D. P. (2014). Seismic structure of the Helan–Liupan–Ordos western margin tectonic belt in North-Central China and its geodynamic implications. J. Asian Earth Sci., 87, 141–156.

Cheng, F., Jolivet, M., Dupont-Nivet, G., Wang, L., Yu, X. J., and Guo, Z. J. (2015). Lateral extrusion along the Altyn Tagh Fault, Qilian Shan (NE Tibet): insight from a 3D crustal budget. Terra Nova, 27(6), 416–425.

Chiao, L. Y., and Kuo, B. Y. (2001). Multiscale seismic tomography. Geophys. J. Int., 145(2), 517–527.

Clark, M. K., and Royden, L. H. (2000). Topographic ooze: Building the eastern margin of Tibet by lower crustal flow. Geology, 28(8), 703–706.<703:TOBTEM>2.0.CO;2

Daubechies, I. (1992). Ten Lectures on Wavelets. Philadelphia: Society for Industrial and Applied Mathematics.222

Duvall, A. R., Clark, M. K., van der Pluijm, B. A., and Li, C. Y. (2011). Direct dating of Eocene reverse faulting in northeastern Tibet using Ar-dating of fault clays and low-temperature thermochronometry. Earth Planet. Sci. Lett., 304(3–4), 520–526.

England, P., and Houseman, G. (1986). Finite strain calculations of continental deformation: 2. Comparison with the India-Asia collision zone. J. Geophys. Res. Solid Earth, 91(B3), 3664–3676.

Feng, M., Kumar, P., Mechie, J., Zhao, W., Kind, R., Su, H., Xue, G., Shi, D., and Qian, H. (2014). Structure of the crust and mantle down to 700 km depth beneath the East Qaidam basin and Qilian Shan from P and S receiver functions. Geophys. J. Int., 199(3), 1416–1429.

Figueiredo, M. A. T., Nowak, R. D., and Wright, S. J. (2007). Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems. IEEE J. Sel. Top. Signal Process., 1(4), 586–597.

Gan, W. J., Zhang, P. Z., Shen, Z. K., Niu, Z. J., Wang, M., Wan, Y. G., Zhou, D. M., and Cheng, J. (2007). Present-day crustal motion within the Tibetan Plateau inferred from GPS measurements. J. Geophys. Res. Solid Earth, 112(B8), B08416.

Gao, X., Gao, B., Chen, J. H., Liu, Q. Y., Li, S. C., and Li, Y. (2018). Rebuilding of the lithosphere beneath the western margin of Ordos: Evidence from multiscale seismic tomography. Chinese J. Geophys. (in Chinese) , 61(7), 2736–2749.

Gehrels, G., Kapp, P., DeCelles, P., Pullen, A., Blakey, R., Weislogel, A., Ding, L., Guynn, J., Martin, A., … Yin, A. (2011). Detrital zircon geochronology of pre-Tertiary strata in the Tibetan-Himalayan orogen. Tectonics, 30(5), TC5016.

Gehrels, G. E., Yin, A., and Wang, X. F. (2003). Detrital-zircon geochronology of the northeastern Tibetan plateau. Geol. Soc. Am. Bull., 115(7), 881–896.<0881:DGOTNT>2.0.CO;2

Guo, B., Liu, Q. Y., Chen, J. H., Zhao, D. P., Li, S. C., and Lai, Y. G. (2004). Seismic tomographic imaging of the crust and upper mantle beneath the Northeastern edge of the Qinghai-Xizang plateau and the Ordos area. Chinese J. Geophys. (in Chinese) , 47(5), 790–797.

Guo, X. Y., Gao, R., Li, S. Z., Xu, X., Huang, X. F., Wang, H. Y., Li, W. H., Zhao, S. J., and Li, X. Y. (2016). Lithospheric architecture and deformation of NE Tibet: New insights on the interplay of regional tectonic processes. Earth Planet. Sci. Lett., 449, 89–95.

Huang, Z. X., Su, W., Peng, Y. J., Zheng, Y. J., and Li, H. Y. (2003). Rayleigh wave tomography of China and adjacent regions. J. Geophys. Res., 108(B2), 2073.

Kissling, E., Ellsworth, W. L., Eberhart-Phillips, D., and Kradolfer, U. (1994). Initial reference models in local earthquake tomography. J. Geophys. Res. Solid Earth, 99(B10), 19635–19646.

Laske, G., Masters., G., Ma, Z. T., and Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree Global Model of Earth's Crust. In Geophysical Research Abstracts, vol. 15, Abstract EGU2013-2658. Vienna: EGU.222

Li, C., van der Hilst, D. R., Meltzer, A. S., and Engdahl, E. R. (2008). Subduction of the Indian lithosphere beneath the Tibetan Plateau and Burma. Earth Planet. Sci. Lett., 274(1–2), 157–168.

Li, H. L., Fang, J., and Braitenberg, C. (2017). Lithosphere density structure beneath the eastern margin of the Tibetan Plateau and its surrounding areas derived from GOCE gradients data. Geod. Geodyn., 8(3), 147–154.

Li, H. Y., Shen, Y, Huang, Z. X., Li, X. F., Gong, M., Shi, D. N., Sandvol, E., and Li, A. B. (2014). The distribution of the mid-to-lower crustal low-velocity zone beneath the northeastern Tibetan Plateau revealed from ambient noise tomography. J. Geophys. Res. Solid Earth, 119(3), 1954–1970.

Li, L., Li, A. B., Shen, Y., Sandvol, E. A., Shi, D. N., Li, H. Y., and Li, X. F. (2013). Shear wave structure in the northeastern Tibetan Plateau from Rayleigh wave tomography. J. Geophys. Res. Solid Earth, 118(8), 4170–4183.

Li, Z., Guo, B., Chen, J. H., Liu, Q. Y. (2015). Parameterization in seismic tomography. Progress in Geophysics (in Chinese) , 30(4), 1616–1624.

Liang, S. M., Gan, W. J., Shen, C. Z., Xiao, G. R., Liu, J., Chen, W. T., Ding, X. G., and Zhou, D. M. (2013). Three-dimensional velocity field of present-day crustal motion of the Tibetan Plateau derived from GPS measurements. J. Geophys. Res. Solid Earth, 118(10), 5722–5732.

Métivier, F., Gaudemer, Y., Tapponnier, P., and Meyer, B. (1998). Northeastward growth of the Tibet plateau deduced from balanced reconstruction of two depositional areas: The Qaidam and Hexi Corridor basins, China. Tectonics, 17(6), 823–842.

Meyer, B., Tapponnier, P., Bourjot, L., Métivier, F., Gaudemer, Y., Peltzer, G., Guo, S. M., and Chen, Z. T. (1998). Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, strike-slip controlled growth of the Tibet plateau. Geophys. J. Int., 135(1), 1–47.

Rawlinson, N., and Sambridge, M. (2004). Wave front evolution in strongly heterogeneous layered media using the fast marching method. Geophys. J. Int., 156(3), 631–647.

Royden, L.H., Burchfiel B. C., King R. W., Wang E., Chen Z. L., Shen F., Liu Y. P. (1997). Surface deformation and lower crustal flow in Eastern Tibet. Science, 276, 788–790.

Shi, J. Y., Shi, D. N., Shen, Y., Zhao, W. J., Xue, G. Q., Su, H. P., and Song, Y. (2017). Growth of the northeastern margin of the Tibetan Plateau by squeezing up of the crust at the boundaries. Sci. Rep., 7, 10591.

Song, S. G., Niu, Y. L., Li, S., and Xia, X. H. (2013). Tectonics of the North Qilian orogen, NW China. Gondw. Res., 23(4), 1378–1401.

Sun, W. J., Li, S. Z., Liu, X., Santosh, M., Zhao, S. J., Guo, L. L., Cao, H. H., Yu, S., Dai, L. M., and Zhang, Y. (2015). Deep structures and surface boundaries among Proto-Tethyan micro-blocks: Constraints from seismic tomography and aeromagnetic anomalies in the Central China Orogen. Tectonophysics, 659, 109–121.

Tapponnier, P., Xu, Z. Q., Roger, F., Meyer, B., Arnaud, N., Arnaud, G., and Yang, J. S. (2001). Oblique stepwise rise and growth of the Tibet Plateau. Science, 294(5547), 1671–1677.

Tapponnier P., Peltzer G., Le Dain A. Y., Armijo R., Cobbold P. (1982). Propagating extrusion tectonics in Asia; new insights from simple experiments with plasticine. Geology, 10, 611–616.

Tian, X. B., and Zhang, Z. J. (2013). Bulk crustal properties in NE Tibet and their implications for deformation model. Gondw Res., 24(2), 548–559.

Wang, P., and Wang, Z. G. (1997). Division of the Alxa Block and its attribution. Earthquake (in Chinese) , 17(1), 103–112.

Wang, Q., Gao, Y., Shi, Y. T., and Wu, J. (2013). Seismic anisotropy in the uppermost mantle beneath the northeastern margin of Qinghai-Tibet plateau: evidence from shear wave splitting of SKS, PKS and SKKS. Chinese J. Geophys. (in Chinese) , 56(3), 892–905.

Wang, Q., Niu, F. L., Gao, Y., and Chen, Y. T. (2016). Crustal structure and deformation beneath the NE margin of the Tibetan plateau constrained by teleseismic receiver function data. Geophys. J. Int., 204(1), 167–179.

Wang, Y. (2001). Heat flow pattern and lateral variations of lithosphere strength in China mainland: Constraints on active deformation. Phys. Earth Planet. Inter., 126(3–4), 121–146.

Wang, Y. D., Zheng, J. J., Zhang, W. L., Li, S. Y., Liu, X. W., Yang, X., and Liu, Y. H. (2012). Cenozoic uplift of the Tibetan Plateau: Evidence from the tectonic- sedimentary evolution of the western Qaidam Basin. Geosci. Front., 3(2), 175–187.

Wu, C., Yin, A., Zuza, V. A., Zhang, J. Y., Liu, W. C., and Ding, L. (2016). Pre-Cenozoic geologic history of the central and northern Tibetan Plateau and the role of Wilson cycles in constructing the Tethyan orogenic system. Lithosphere, 8(3), 254–292.

Wu, C. L., Xu, T., Badal, J., Wu, Z. B., and Teng, J. W. (2015). Seismic anisotropy across the Kunlun fault and their implications for northward transforming lithospheric deformation in northeastern Tibet. Tectonophysics, 659, 91–101.

Wu, Y. B., and Zheng, Y. F. (2013). Tectonic evolution of a composite collision orogen: an overview on the Qinling–Tongbai–Hong’an–Dabie–Sulu orogenic belt in central China. Gondw. Res., 23(4), 1402–1428.

Xiao, W. J., Windley, B. F., Yong, Y., Yan, Z., Yuan, C., Liu, C. Z., and Li, J. L. (2009). Early Paleozoic to Devonian multiple-accretionary model for the Qilian Shan, NW China. J. Asian Earth Sci., 35(3–4), 323–333.

Xiong, S. Q., Yang, H., Ding, Y. Y., Li, Z. K., and Li, W. (2016). Distribution of igneous rocks in China revealed by aeromagnetic data. J. Asian Earth Sci., 129, 231–242.

Yi, G. X., Yao, H. J., Zhu, J. S., and van der Hilst, R. D. (2008). Rayleigh-wave phase velocity distribution in China continent and its adjacent regions. Chinese J. Geophys., 51(2), 265–274.

Yin, A., and Harrison, T. M. (2000). Geologic evolution of the Himalayan-Tibetan orogen. Annu. Rev. Earth Planet. Sci., 28, 211–280.

Yue, H., Chen, J. J., Sandvol, E., Ni, J., Hearn, T., Zhou, S. Y., Feng, Y. G., Ge, Z. X., Trujillo, A., … Liu, Z. (2012). Lithospheric and upper mantle structure of the northeastern Tibetan Plateau. J. Geophys. Res. Solid Earth, 117(B5), B05307.

Zhang, G. B., Song, S. G., Zhang, L. F., and Niu, Y. L. (2008). The subducted oceanic crust within continental-type UHP metamorphic belt in the North Qaidam, NW China: Evidence from petrology, geochemistry and geochronology. Lithos, 104(1–4), 99–118.

Zhang, J., Li, J. Y., Li, Y. F., and Ma, Z. J. (2007). The Cenozoic deformation of the Alxa block in central Asia-Question on the northeastern extension of the Altyn Tagh fault in Cenozoic time. Acta Geol. Sin. (in Chinese) , 81(11), 1481–1497.

Zhang, J. X., Yu, S. Y., Li, Y. S., Yu, X. X., Lin, Y. H., and Mao, X. H. (2015). Subduction, accretion and closure of Proto-Tethyan Ocean: Early Paleozoic accretion/collision orogeny in the Altun-Qilian-North Qaidam orogenic system. Acta Petrol. Sin. (in Chinese) , 31(12), 3531–3554.

Zhang, P. Z., Shen, Z. K., Wang, M., Gan, W. J., Bürgmann, R., Molnar, P., Wang, Q., Niu, Z. J., Sun, J. Z., … You, X. Z. (2004). Continuous deformation of the Tibetan Plateau from Global Positioning System data. Geology, 32(9), 809–812.

Zhang, Q., Sandvol, E., Ni J., Yang, Y. J., and Chen, Y. J. (2011). Rayleigh wave tomography of the northeastern margin of the Tibetan Plateau. Earth Planet. Sci. Lett., 304(1–2), 103–112.

Zhang, Z. J., Bai, Z. M., Klemperer, S. L., Tian, X. B., Xu, T., Chen, Y., and Teng, J. W. (2013). Crustal structure across northeastern Tibet from wide-angle seismic profiling: Constraints on the Caledonian Qilian orogeny and its reactivation. Tectonics, 606, 140–159.

Zheng W. J., Zhang P. Z., Ge W. P., Molnar P., Zhang H. P., Yuan D. Y., and Liu J. H. (2013). Late Quaternary slip rate of the South Heli Shan Fault (northern Hexi Corridor, NW China) and its implications for northeastward growth of the Tibetan Plateau. Tectonics, 32, 271–293.

Zheng, D., Li, H. Y., Shen, Y., Tan, J., Ouyang, L. B., and Li, X. F. (2016). Crustal and upper mantle structure beneath the northeastern Tibetan Plateau from joint analysis of receiver functions and Rayleigh wave dispersions. Geophys. J. Int., 204(1), 583–590.

Zou, C. Q., He, R. Z., Duan, Y. H., Wei, Y. H., Liu, Q. X., and Liu, Y. (2017). Deep structure beneath the eastern Altyn Tagh fault and its vicinity derived from teleseismic P-wave tomography. Chinese J. Geophys. (in Chinese) , 60(6), 2279–2290.

Zuza, A. V., Cheng, X. G., and Yin, A. (2016). Testing models of Tibetan Plateau formation with Cenozoic shortening estimates across the Qilian Shan–Nan Shan thrust belt. Geosphere, 12(2), 501–532.


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010


TianYu Zheng, YuMei He, Yue Zhu, 2022: A new approach for inversion of receiver function for crustal structure in the depth domain, Earth and Planetary Physics, 6, 83-95. doi: 10.26464/epp2022008


Ting Luo, Wei Leng, 2021: Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab, Earth and Planetary Physics, 5, 290-295. doi: 10.26464/epp2021027


Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026


XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021


QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020


Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031


ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027


Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022


HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006


ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008


XinZhou Li, ZhaoJin Rong, JiaWei Gao, Yong Wei, Zhen Shi, Tao Yu, WeiXing Wan, 2020: A local Martian crustal field model: Targeting the candidate landing site of the 2020 Chinese Mars Rover, Earth and Planetary Physics, 4, 420-428. doi: 10.26464/epp2020045


DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038


HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, HeTing Jian, 2022: Vertical crustal deformation velocity and its influencing factors over the Qinghai–Tibet Plateau based on satellite gravity data, Earth and Planetary Physics, 6, 366-377. doi: 10.26464/epp2022034


ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li