Citation:
Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li,
2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146.
http://doi.org/10.26464/epp2019013
2019, 3(2): 136-146. doi: 10.26464/epp2019013
Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER
1. | Chinese Academy of Sciences Key Laboratory of Geospace Environment, Department of Geophysics and Planetary Sciences, University of Science and Technology of China, Hefei 230026, China |
2. | Mengcheng National Geophysical Observatory, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China |
3. | Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, China |
4. | National Key Laboratory of Electromagnetic Environment, China Research Institute of Radiowave Propagation, Qingdao 266107, China |
Observations of a quasi-90-day oscillation in the mesosphere and lower thermosphere (MLT) region from April 2011 to December 2014 are presented in this study. There is clear evidence of a quasi-90-day oscillation in temperatures obtained from the Kunming meteor radar (25.6°N, 103.8°E) and Sounding of the Atmosphere using Broadband Emission Radiometry (SABER), as well as in wind observed by the Kunming meteor radar. The quasi-90-day oscillation appears to be a prominent feature in the temperatures and meridional wind tides and presents quite regular cycles that occur approximately twice per year. The amplitudes and phases of the quasi-90-day oscillation in the SABER temperature show a feature similar to that of upward-propagated diurnal tides, which have a vertical wavelength of ~20 km above 70 km. In the lower atmosphere, a similar 90-day variability is presented in the surface latent heat flux and correlates with the temperature in the MLT region. Similar to the quasi-90-day oscillation in temperature, a 90-day variability of ozone (O3) is also present in the MLT region and is considered to be driven by a similar variability in the upwardly-propagated diurnal tides generated in the lower atmosphere. Moreover, the 90-day variability in the absorption of ultraviolet (UV) radiation by daytime O3 in the MLT region is an in situ source of the quasi-90-day oscillation in the MLT temperature.
Eckermann, S. D., and Vincent, R. A. (1994). First observations of intraseasonal oscillations in the equatorial mesosphere and lower thermosphere. Geophys. Res. Lett., 21(4), 265–268. https://doi.org/10.1029/93GL02835 |
Eckermann, S. D., Rajopadhyaya, D. K., and Vincent, R. A. (1997). Intraseasonal wind variability in the equatorial mesosphere and lower thermosphere: Long-term observations from the central pacific. J. Atmos. Sol. Terr. Phys., 59(6), 603–627. https://doi.org/10.1016/S1364-6826(96)00143-5 |
Gasperini, F., Hagan, M. E., and Zhao, Y. (2017). Evidence of tropospheric 90 day oscillations in the thermosphere. Geophys. Res. Lett., 44(20), 10125–10133. https://doi.org/10.1002/2017GL075445 |
Grinsted, A., Moore, J. C., and Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin. Processes Geophys., 11(5-6), 561–566. https://doi.org/10.5194/npg-11-561-2004 |
Guharay, A., Sekar, R., Venkat Ratnam, M., and Batista, P. P. (2012). Characteristics of the intraseasonal oscillations in the lower and middle atmosphere over Gadanki. J. Atmos. Sol. Terr. Phys., 77, 167–173. https://doi.org/10.1016/j.jastp.2011.12.016 |
Guharay, A., Batista, P. P., Clemesha, B. R., Sarkhel, S., and Buriti, R. A. (2014). Investigation of the intraseasonal oscillations over a Brazilian equatorial station: a case study. Earth Planets Space, 66, 145. https://doi.org/10.1186/s40623-014-0145-3 |
Gurubaran, S., and Rajaram, R. (1999). Long-term variability in the mesospheric tidal winds observed by MF radar over Tirunelveli (8.7°N, 77.8°E). Geophys. Res. Lett., 26(8), 1113–1116. https://doi.org/10.1029/1999GL900171 |
Hagan, M. E., Forbes, J. M., and Vial, F. (1995). On modeling migrating solar tides. Geophys. Res. Lett., 22(8), 893–896. https://doi.org/10.1029/95GL00783 |
Hagan, M. E. (1996). Comparative effects of migrating solar sources on tidal signatures in the middle and upper atmosphere. J. Geophys. Res., 101(D16), 21213–21222. https://doi.org/10.1029/96JD01374 |
Hagan, M. E., and Forbes, J. M. (2002). Migrating and nonmigrating diurnal tides in the middle and upper atmosphere excited by tropospheric latent heat release. J. Geophys. Res., 107(D24), ACL 6-1–ACL 6-15. https://doi.org/10.1029/2001JD001236 |
Hocking, W. K. (1999). Temperatures using radar-meteor decay times. Geophys. Res. Lett., 26(21), 3297–3300. https://doi.org/10.1029/1999GL003618 |
Hocking, W. K., Fuller, B., and Vandepeer, B. (2001). Real-time determination of meteor-related parameters utilizing modern digital technology. J. Atmos. Sol. Terr. Phys., 63(2-3), 155–169. https://doi.org/10.1016/S1364-6826(00)00138-3 |
Holdsworth, D. A., Reid, I. M., and Cervera, M. A. (2004). Buckland Park all-sky interferometric meteor radar. Radio Science, 39, RS5009. https://doi.org/10.1029/2003RS003014 |
Holdsworth, D. A., Morris, R. J., Murphy, D. J., Reid, I. M., Burns, G. B., and French, W. J. R. (2006). Antarctic mesospheric temperature estimation using the Davis mesosphere-stratosphere-troposphere radar. J. Geophys. Res., 111(D5), D05108. https://doi.org/10.1029/2005JD006589 |
Huang, K. M., Liu, A. Z., Zhang, S. D., Yi, F., Huang, C. M., Gan, Q., Gong, Y., Zhang, Y. H., and Wang, R. (2015). Observational evidence of quasi-27-day oscillation propagating from the lower atmosphere to the mesosphere over 20°N. Ann. Geophys., 33(10), 1321–1330. https://doi.org/10.5194/angeo-33-1321-2015 |
Isoda, F., Tsuda, T., Nakamura, T., Vincent, R. A., Reid, I. M., Achmad, E., Sadewo, A., and Nuryanto, A. (2004). Intraseasonal oscillations of the zonal wind near the mesopause observed with medium-frequency and meteor radars in the tropics. J. Geophys. Res., 109(D21), D21108. https://doi.org/10.1029/2003JD003378 |
Jiang, G. Y., Xu, J. Y., Shi, J. K., Yang, G. T., Wang, X., and Yan, C. X. (2010). The first observation of the atmospheric tides in the mesosphere and lower thermosphere over Hainan, China. Chin. Sci. Bull., 55(11), 1059–1066. https://doi.org/10.1007/s11434-010-0084-8 |
Kumar, K. K., Antonita, T. M., Ramkumar, G., Deepa, V., Gurubaran, S., and Rajaram, R. (2007). On the tropospheric origin of Mesosphere Lower Thermosphere region intraseasonal wind variability. J. Geophys. Res., 112(D7), D07109. https://doi.org/10.1029/2006JD007962 |
Li, N., Chen, J. S., Ding, Z. H., and Zhao, Z. W. (2015). Mean winds observed by the Kunming MF radar in 2008-2010. J. Atmos. Sol. -Terr. Phys., 122, 58–65. https://doi.org/10.1016/j.jastp.2014.10.011 |
Li, T., Liu, A. Z., Lu, X., Li, Z. H., Franke, S. J., Swenson, G. R., and Dou, X. K. (2012). Meteor-radar observed mesospheric semi-annual oscillation (SAO) and quasi-biennial oscillation (QBO) over Maui, Hawaii. J. Geophys. Res., 117(D5), D05130. https://doi.org/10.1029/2011JD016123 |
Lieberman, R. S. (1998). Intraseasonal variability of high-resolution Doppler imager winds in the equatorial mesosphere and lower thermosphere. J. Geophys. Res., 103(D10), 11221–11228. https://doi.org/10.1029/98JD00532 |
Lieberman, R. S., Ortland, D. A., and Yarosh, E. S. (2003). Climatology and interannual variability of diurnal water vapor heating. J. Geophys. Res., 108(D3), 4123. https://doi.org/10.1029/2002JD002308 |
Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced data. Astrophys. Space Sci., 39(2), 447–462. https://doi.org/10.1007/BF00648343 |
Lu, X., Liu, A. Z., Oberheide, J., Wu, Q., Li, T., Li, Z. H., Swenson, G. R., and Franke, S. J. (2011). Seasonal variability of the diurnal tide in the mesosphere and lower thermosphere over Maui, Hawaii (20.7°N, 156.3°W). J. Geophys. Res., 116(D17), D17103. https://doi.org/10.1029/2011JD015599 |
Luo, Y., Manson, A. H., Meek, C. E., Igarashi, K., and Jacobi, C. (2001). Extra long period (20-40 day) oscillations in the mesospheric and lower thermospheric winds: observations in Canada, Europe and Japan, and considerations of possible solar influences. J. Atmos. Sol. Terr. Phys., 63(9), 835–852. https://doi.org/10.1016/S1364-6826(00)00206-6 |
Madden, R. A., and Julian, P. R. (1971). Detection of a 40-50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci., 28(5), 702–708. https://doi.org/10.1175/1520-0469(1971)028<0702:DOADOI>2.0.CO;2 |
Madden, R. A., and Julian, P. R. (1972). Description of global-scale circulation cells in the tropics with a 40-50 day period. J. Atmos. Sci., 29(6), 1109–1123. https://doi.org/10.1175/1520-0469(1972)029<1109:DOGSCC>2.0.CO;2 |
Miyoshi, Y., and Fujiwara, H. (2006). Excitation mechanism of intraseasonal oscillation in the equatorial mesosphere and lower thermosphere. J. Geophys. Res., 111(D14), D14108. https://doi.org/10.1029/2005JD006993 |
Mukhtarov, P., Pancheva, D., and Andonov, B. (2009). Global structure and seasonal and interannual variability of the migrating diurnal tide seen in the SABER/TIMED temperatures between 20 and 120 km. J. Geophys. Res., 114(A2), A02309. https://doi.org/10.1029/2008JA013759 |
Pancheva, D., Mitchell, N. J., Younger, P. T., and Muller, H. G. (2003). Intra-seasonal oscillations observed in the MLT region above UK (52°N, 2°W) and ESRANGE (68°N, 21°E). Geophys. Res. Lett., 30(21), 2084. https://doi.org/10.1029/2003GL017809 |
Pancheva, D., Mukhtarov, P., and Smith, A. K. (2014). Nonmigrating tidal variability in the SABER/TIMED mesospheric ozone. Geophys. Res. Lett., 41(11), 4059–4067. https://doi.org/10.1002/2014GL059844 |
Rao, R. K., Gurubaran, S., Sathishkumar, S., Sridharan, S., Nakamura, T., Tsuda, T., Takahashi, H., Batista, P. P., Clemesha, B. R., … Mitchell, N. J. (2009). Longitudinal variability in intraseasonal oscillation in the tropical mesosphere and lower thermosphere region. J. Geophys. Res., 114(D19), D19110. https://doi.org/10.1029/2009JD011811 |
Reid, I. M., Spargo, A. J., and Woithe, J. M. (2014). Seasonal variations of the nighttime O(1S) and OH (8-3) airglow intensity at Adelaide, Australia. J. Geophys. Res. Atmos., 119(11), 6991–7013. https://doi.org/10.1002/2013JD020906 |
Scargle, J. D. (1982). Studies in astronomical time series analysis. II- Statistical aspects of spectral analysis of unevenly spaced data. Astrophys. J., 263, 835–853. https://doi.org/10.1086/160554 |
Shepherd, M. G., Evans, W. F. J., Hernandez, G., Offermann, D., and Takahashi, H. (2004). Global variability of mesospheric temperature: Mean temperature field. J. Geophys. Res., 109(D24), D24117. https://doi.org/10.1029/2004JD005054 |
Smith, A. K., and Marsh, D. R. (2005). Processes that account for the ozone maximum at the mesopause. J. Geophys. Res., 110(D23), D23305. https://doi.org/10.1029/2005JD006298 |
Smith, A. K., Marsh, D. R., Mlynczak, M. G., and Mast, J. C. (2010). Temporal variations of atomic oxygen in the upper mesosphere from SABER. J. Geophys. Res., 115(D18), D18309. https://doi.org/10.1029/2009JD013434 |
Sridharan, S., Tsuda, T., and Gurubaran, S. (2007). Radar observations of long-term variability of mesosphere and lower thermosphere winds over Tirunelveli (8.7°N, 77.8°E). J. Geophys. Res., 112(D23), D23105. https://doi.org/10.1029/2007JD008669 |
Torrence, C., and Compo, G. P. (1998). A practical guide to wavelet analysis. Bull. Amer. Meteor. Soc., 79(1), 61–78. https://doi.org/10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 |
Vincent, R. A., Kovalam, S., Fritts, D. C., and Isler, J. R. (1998). Long-term MF radar observations of solar tides in the low-latitude mesosphere: Interannual variability and comparisons with the GSWM. J. Geophys. Res., 103(D8), 8667–8683. https://doi.org/10.1029/98JD00482 |
Xu, J. Y., Smith, A. K., Yuan, W., Liu, H. L., Wu, Q., Mlynczak, M. G., and Russell III, J. M. (2007). Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J. Geophys. Res., 112(D24), D24106. https://doi.org/10.1029/2007JD008546 |
Xue, X. H., Dou, X. K., Lei, J., Chen, J. S., Ding, Z. H., Li, T., Gao, Q., Tang, W. W., Cheng, X. W., and Wei, K. (2013). Lower thermospheric-enhanced sodium layers observed at low latitude and possible formation: Case studies. J. Geophys. Res., 118(5), 2409–2418. https://doi.org/10.1002/jgra.50200 |
Yang, C., Li, T., Smith, A. K., and Dou, X. (2017). The response of the southern hemisphere middle atmosphere to the madden-julian oscillation during austral winter using the specified-dynamics whole atmosphere community climate model. J. Climate, 30(20), 8317–8333. https://doi.org/10.1175/JCLI-D-17-0063.1 |
Yang, C. Y., Smith, A. K., Li, T., and Dou, X. K. (2018). The effect of the Madden-Julian oscillation on the mesospheric migrating diurnal tide: A study using SD-WACCM. Geophys. Res. Lett., 45(10), 5105–5114. https://doi.org/10.1029/2018GL077956 |
Yi, W., Xue, X. H., Chen, J. S., Dou, X. K., Chen, T. D., and Li, N. (2016). Estimation of mesopause temperatures at low latitudes using the Kunming meteor radar. Radio Sci., 51(3), 130–141. https://doi.org/10.1002/2015RS005722 |
Yi, W., Xue, X. H., Reid, I. M., Younger, J. P., Chen, J. S., Chen, T. D., and Li, N. (2018). Estimation of mesospheric densities at low latitudes using the Kunming meteor radar together with SABER temperatures. J. Geophys. Res., 123(4), 3183–3195. https://doi.org/10.1002/2017JA025059 |
Zhang, C. D. (2005). Madden-Julian oscillation. Rev. Geophys., 43(2), RG2003. https://doi.org/10.1029/2004RG000158 |
Zhang, X. L., Forbes, J. M., Hagan, M. E., Russell III, J. M., Palo, S. E., Mertens, C. J., and Mlynczak, M. G. (2006). Monthly tidal temperatures 20-120 km from TIMED/SABER. J. Geophys. Res., 111(A10), A10S08. https://doi.org/10.1029/2005JA011504 |
[1] |
JianYuan Wang, Wen Yi, TingDi Chen, XiangHui Xue, 2020: Quasi-6-day waves in the mesosphere and lower thermosphere region and their possible coupling with the QBO and solar 27-day rotation, Earth and Planetary Physics, 4, 285-295. doi: 10.26464/epp2020024 |
[2] |
Yun Gong, Zheng Ma, Chun Li, XieDong Lv, ShaoDong Zhang, QiHou Zhou, ChunMing Huang, KaiMing Huang, You Yu, GuoZhu Li, 2020: Characteristics of the quasi-16-day wave in the mesosphere and lower thermosphere region as revealed by meteor radar, Aura satellite, and MERRA2 reanalysis data from 2008 to 2017, Earth and Planetary Physics, 4, 274-284. doi: 10.26464/epp2020033 |
[3] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040 |
[4] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049 |
[5] |
GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002 |
[6] |
BaoZhu Zhou, XiangHui Xue, Wen Yi, HaiLun Ye, Jie Zeng, JinSong Chen, JianFei Wu, TingDi Chen, XianKang Dou, 2022: A comparison of MLT wind between meteor radar chain data and SD-WACCM results, Earth and Planetary Physics. doi: 10.26464/epp2022040 |
[7] |
Zhou Tang, Dong Guo, YuCheng Su, ChunHua Shi, ChenXi Zhang, Yu Liu, XiangDong Zheng, WenWen Xu, JianJun Xu, RenQiang Liu, WeiLiang Li, 2019: Double cores of the Ozone Low in the vertical direction over the Asian continent in satellite data sets, Earth and Planetary Physics, 3, 93-101. doi: 10.26464/epp2019011 |
[8] |
XiaoYan Bai, KaiMing Huang, ShaoDong Zhang, ChunMing Huang, Yun Gong, 2021: Anomalous changes of temperature and ozone QBOs in 2015−2017 from radiosonde observation and MERRA-2 reanalysis, Earth and Planetary Physics, 5, 280-289. doi: 10.26464/epp2021028 |
[9] |
ShuYang Yu, Jian Rao, Dong Guo, 2022: Arctic ozone loss in early spring and its impact on the stratosphere-troposphere coupling, Earth and Planetary Physics, 6, 177-190. doi: 10.26464/epp2022015 |
[10] |
ShuCan Ge, HaiLong Li, Lin Meng, MaoYan Wang, Tong Xu, Safi Ullah, Abdur Rauf, Abdel Hannachid, 2020: On the radar frequency dependence of polar mesosphere summer echoes, Earth and Planetary Physics, 4, 571-578. doi: 10.26464/epp2020061 |
[11] |
XinAn Yue, WeiXing Wan, Han Xiao, LingQi Zeng, ChangHai Ke, BaiQi Ning, Feng Ding, BiQiang Zhao, Lin Jin, Chen Li, MingYuan Li, JunYi Wang, HongLian Hao, Ning Zhang, 2020: Preliminary experimental results by the prototype of Sanya Incoherent Scatter Radar, Earth and Planetary Physics, 4, 579-587. doi: 10.26464/epp2020063 |
[12] |
Hao Chen, JinHu Wang, Ming Wei, HongBin Chen, 2018: Accuracy of radar-based precipitation measurement: An analysis of the influence of multiple scattering and non-spherical particle shape, Earth and Planetary Physics, 2, 40-51. doi: 10.26464/epp2018004 |
[13] |
Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054 |
[14] |
YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050 |
[15] |
Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022 |
[16] |
Jun Wu, Jian Wu, I. Haggstrom, Tong Xu, ZhengWen Xu, YanLi Hu, 2022: Incoherent scatter radar (ISR) observations of high-frequency enhanced ion and plasma lines induced by X/O mode pumping around the critical altitude, Earth and Planetary Physics, 6, 305-312. doi: 10.26464/epp2022038 |
[17] |
YingYing Huang, Jun Cui, HuiJun Li, ChongYin Li, 2022: Inter-annual variations of 6.5-day planetary waves and their relations with QBO, Earth and Planetary Physics, 6, 135-148. doi: 10.26464/epp2022005 |
[18] |
Gang Lu, Liang Zhao, Ling Chen, Bo Wan, FuYuan Wu, 2021: Reviewing subduction initiation and the origin of plate tectonics: What do we learn from present-day Earth?, Earth and Planetary Physics, 5, 123-140. doi: 10.26464/epp2021014 |
[19] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)