Citation:
Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao,
2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468.
http://doi.org/10.26464/epp2018044
2018, 2(6): 462-468. doi: 10.26464/epp2018044
China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results
1. | Institute of Crustal Dynamics, China Earthquake Administration, Beijing 100085, China |
2. | Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China |
3. | DFH Satellite Co., Ltd., Beijing 100081, China |
4. | School of Space and Environment, Beihang University, Beijing 100191, China |
Four levels of the data from the search coil magnetometer (SCM) onboard the China Seismo-Electromagnetic Satellite (CSES) are defined and described. The data in different levels all contain three components of the waveform and/or spectrum of the induced magnetic field around the orbit in the frequency range of 10 Hz to 20 kHz; these are divided into an ultra-low-frequency band (ULF, 10–200 Hz), an extremely low frequency band (ELF, 200–2200 Hz), and a very low frequency band (VLF, 1.8–20 kHz). Examples of data products for Level-2, Level-3, and Level-4 are presented. The initial results obtained in the commission test phase demonstrated that the SCM was in a normal operational status and that the data are of high enough quality to reliably capture most space weather events related to low-frequency geomagnetic disturbances.
Balasis, G., and Mandea, M. (2007). Can electromagnetic disturbances related to the recent great earthquakes be detected by satellite magnetometers?. Tectonophysics, 431(1–4), 173–195. https://doi.org/10.1016/j.tecto.2006.05.038 |
Cao, J. B., Zeng, L., Zhan, F., Wang, Z. G., Wang, Y., Chen, Y., Meng Q. C., Ji, Z. Q., Wang, P. F., … Ma, L. Y. (2018). The electromagnetic wave experiment for CSES mission: Search coil magnetometer. Sci. China Technol. Sci., 61(5), 653–658. https://doi.org/10.1007/s11431-018-9241-7 |
Davies, K., and Baker, D. M. (1965). Ionospheric effects observed around the time of the Alaskan earthquake of March 28, 1964. J. Geophys. Res., 70(9), 2251–2253. https://doi.org/10.1029/JZ070i009p02251 |
Fraser-Smith, A. C., Bernardi, A., McGill, P. R., Ladd, M. E., Helliwell, R. A., and Villard, Jr. O. G. (1990). Low-frequency magnetic field measurements near the epicenter of the Ms7.1 Loma Prieta earthquake. Geophys. Res. Lett., 17(9), 1465–1468. https://doi.org/10.1029/GL017i009p01465 |
Hayakawa, M., Itoh, T., Hattori, K., and Yumoto, K. (2000). ULF electromagnetic precursors for an earthquake at Biak, Indonesia on February 17, 1996. Geophys. Res. Lett., 27(10), 1531–1534. https://doi.org/10.1029/1999GL005432 |
Huang, Q. H. (2011). Retrospective investigation of geophysical data possibly associated with the Ms8.0 Wenchuan earthquake in Sichuan, China. J. Asian Earth Sci., 41(4–5), 421–427. https://doi.org/10.1016/j.jseaes.2010.05.014 |
Johnston , M. J. S., Mueller, R. J., and Sasai, Y. (1994). Magnetic field observations in the near-field the 28 June 1992 Mw 7.3 Landers, California, earthquake. Bull. Seismol. Soc. Am., 84(3), 792–798 |
Li, M., and Parrot, M. (2013). Statistical analysis of an ionospheric parameter as a base for earthquake prediction. J. Geophys. Res.:Space Phys., 118(6), 3731–3739. https://doi.org/10.1002/jgra.50313 |
Maus, S., Rother, M., Holme, R., Lühr, H., Olsen, N., and Haak, V. (2002). First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field. Geophys. Res. Lett., 29(14), 45-1–47-4. https://doi.org/10.1029/2001GL013685 |
Nagao, T., Enomoto, Y., Fujinawa, Y., Hata, M., Hayakawa, M., Huang, Q., Izutsu, J., Kushida, Y., Maeda, K., … Yoshino, T. (2002). Electromagnetic anomalies associated with 1995 Kobe earthquake. J. Geodyn., 33(4–5), 401–411. https://doi.org/10.1016/S0264-3707(02)00004-2 |
Parrot, M. (2012). Statistical analysis of automatically detected ion density variations recorded by DEMETER and their relation to seismic activity. Ann. Geophys., 55(1), 149–155. https://doi.org/10.4401/ag-5270 |
Parrot, M. (2006). Special issue of planetary and space science ‘DEMETER’. Planet. Space Sci., 54(5), 411–412. https://doi.org/10.1016/j.pss.2005.10.012 |
Parrot, M., Benoist, D., Berthelier, J. J., Błęcki, J., Chapuis, Y., Colin, F., Elie, F., Fergeau, P., Lagoutte, D., … Zamora, P. (2006). The magnetic field experiment IMSC and its data processing onboard DEMETER: Scientific objectives, description and first results. Planet. Space Sci., 54(5), 441–455. https://doi.org/10.1016/j.pss.2005.10.015 |
Park, S. K., Johnston, M. J. S., Madden, T. R., Morgan, F. D., and Morrison, H. F. (1993). Electromagnetic precursors to earthquakes in the ULF band: A review of observations and mechanisms. Rev. Geophys., 31(2), 117–132. https://doi.org/10.1029/93RG00820 |
Shen, X. H., Zhang, X. M., Yuan, S. G., Wang, L. W., Cao, J. B., Huang, J. P., Zhu, X. H., Piergiorgio, P., and Dai, J. P. (2018). The state-of-the-art of the China Seismo-Electromagnetic Satellite mission. Sci. China Technol. Sci., 61(5), 634–642. https://doi.org/10.1007/s11431-018-9242-0 |
Shklyar, D. R., Nunn, D., Smith, A. J., and Sazhin, S. S., (1992). An investigation into the nonlinear frequency shift in magnetospherically propagated VLF pulses. J. Geophys. Res.:Space Phys., 97(A12), 19389–19402. https://doi.org/10.1029/92JA01536 |
Tao, D., Liu, W. L., and Ma, Y. D. (2018). Plasma perturbations in the coexisting environment of VLF transmitter emission, lightning strokes and seismic activity. Sci. China Technol. Sci., 61(5), 678–686. https://doi.org/10.1007/s11431-017-9069-y |
Wang, J. (2007). Historical earthquakes and a tsunami in Bohai Sea. Acta Seismol. Sin., 20(5), 584–592. https://doi.org/10.1007/s11589-007-0584-z |
Yan, R., Parrot, M., and Pinçon, J. L. (2017). Statistical study on variations of the ionospheric ion density observed by DEMETER and related to seismic activities. J. Geophys. Res.:Space Phys., 122(12), 12421–12429. https://doi.org/10.1002/2017JA024623 |
Zhang, X. M., Shen, X. H., Zhao, S. F., Yao, L., Ouyang, X. Y., and Qian, J. D. (2014). The characteristics of quasistatic electric field perturbations observed by DEMETER satellite before large earthquakes. J. Asian Earth Sci., 79, 42–52. https://doi.org/10.1016/j.jseaes.2013.08.026 |
Zhao, Y. L., and Qian, F. Y. (1994). Geoelectric precursors to strong earthquakes in China. Tectonophysics, 233(1–2), 99–113. https://doi.org/10.1016/0040-1951(94)90223-2 |
[1] |
YuanZheng Wen, Dan Tao, GuangXue Wang, JiaYi Zong, JinBin Cao, Roberto Battiston, ZhiMa ZeRen, XuHui Shen, 2022: Ionospheric TEC and plasma anomalies possibly associated with the 14 July 2019 Mw7.2 Indonesia Laiwui earthquake, from analysis of GPS and CSES data, Earth and Planetary Physics, 6, 313-328. doi: 10.26464/epp2022028 |
[2] |
Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050 |
[3] |
JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042 |
[4] |
HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029 |
[5] |
Rui Yan, YiBing Guan, XuHui Shen, JianPing Huang, XueMin Zhang, Chao Liu, DaPeng Liu, 2018: The Langmuir Probe onboard CSES: data inversion analysis method and first results, Earth and Planetary Physics, 2, 479-488. doi: 10.26464/epp2018046 |
[6] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[7] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[8] |
YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015 |
[9] |
XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009 |
[10] |
Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021 |
[11] |
Yi-Ching Lo, Li Zhao, XiWei Xu, Ji Chen, Shu-Huei Hung, 2018: The 13 November 2016 Kaikoura, New Zealand earthquake: rupture process and seismotectonic implications, Earth and Planetary Physics, 2, 139-149. doi: 10.26464/epp2018014 |
[12] |
WeiMin Wang, JianKun He, JinLai Hao, ZhenXing Yao, 2018: Preliminary result for the rupture process of Nov.13, 2017, Mw7.3 earthquake at Iran-Iraq border, Earth and Planetary Physics, 2, 82-83. doi: 10.26464/epp2018008 |
[13] |
LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016 |
[14] |
ZhiKun Ren, ZhuQi Zhang, PeiZhen Zhang, 2018: Different earthquake patterns for two neighboring fault segments within the Haiyuan Fault zone, Earth and Planetary Physics, 2, 67-73. doi: 10.26464/epp2018006 |
[15] |
Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027 |
[16] |
Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028 |
[17] |
YaLi Wang, Tao Xie, YanRu An, Chong Yue, JiuYang Wang, Chen Yu, Li Yao, Jun Lu, 2019: Characteristics of the coseismic geomagnetic disturbances recorded during the 2008 Mw 7.9 Wenchuan Earthquake and two unexplained problems, Earth and Planetary Physics, 3, 435-443. doi: 10.26464/epp2019043 |
[18] |
Ru Liu, YongHong Zhao, JiaYing Yang, Qi Zhang, AnDong Xu, 2019: Deformation field around a thrust fault: A comparison between laboratory results and GPS observations of the 2008 Wenchuan earthquake, Earth and Planetary Physics, 3, 501-509. doi: 10.26464/epp2019047 |
[19] |
Feng Long, ZhiWei Zhang, YuPing Qi, MingJian Liang, Xiang Ruan, WeiWei Wu, GuoMao Jiang, LongQuan Zhou, 2020: Three dimensional velocity structure and accurate earthquake location in Changning–Gongxian area of southeast Sichuan, Earth and Planetary Physics, 4, 163-177. doi: 10.26464/epp2020022 |
[20] |
DaHu Li, ZhiFeng Ding, Yan Zhan, PingPing Wu, LiJun Chang, XiangYu Sun, 2021: Upper crustal velocity and seismogenic environment of the M7.0 Jiuzhaigou earthquake region in Sichuan, China, Earth and Planetary Physics, 5, 348-361. doi: 10.26464/epp2021038 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)