Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. http://doi.org/10.26464/epp2018039

2018, 2(5): 420-429. doi: 10.26464/epp2018039

SOLID EARTH: SEISMOLOGY

Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia

1. 

Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China

2. 

University of Chinese Academy of Sciences, Beijing 100029, China

3. 

Institute of Geophysics and Planetary Physics, University of California at Santa Cruz, California, USA

Corresponding author: LianFeng Zhao, zhaolf@mail.iggcas.ac.cn

Received Date: 2018-07-10
Web Publishing Date: 2018-09-13

The seismological characteristics of the 15 February 2013 Chelyabinsk bolide explosion are investigated based on seismograms recorded at 50 stations with epicentral distances ranging from 229 to 4324 km. By using 8–25 s vertical-component Rayleigh waveforms, we obtain a surface-wave magnitude of 4.17±0.31 for this event. According to the relationship among the Rayleigh-wave magnitude, burst height and explosive yield, the explosion yield is estimated to be 686 kt. Using a single-force source to fit the observed Rayleigh waveforms, we obtain a single force of 1.03×1012 N, which is equivalent to the impact from the shock wave generated by the bolide explosion.

Key words: Rayleigh-wave magnitude, yield estimation, focal mechanism, the 15 February 2013 Chelyabinsk bolide

Antolik, M., Ichinose, G., Creasey, J., and Clauter, D. (2014). Seismic and infrasonic analysis of the major bolide event of 15 February 2013. Seism. Res. Lett., 85(2), 334–343. https://doi.org/10.1785/0220130061

Avramenko, M. I., Glazyrin, I. V., Ionov, G. V., and Karpeev, A. V. (2014). Simulation of the airwave caused by the Chelyabinsk superbolide. J. Geophys. Res.:Atmos., 119(12), 7035–7050. https://doi.org/10.1002/2013JD021028

Ben-Menahem, A. (1975). Source parameters of the Siberian explosion of June 30, 1908, from analysis and synthesis of seismic signals at four stations. Phys. Earth. Planet. Inter., 11(1), 1–35. https://doi.org/10.1016/0031-9201(75)90072-2

Ben-Menahem, A., and Harkrider, D. G. (1964). Radiation patterns of seismic surface waves from buried dipolar point sources in a flat stratified earth. J. Geophys. Res., 69(12), 2605–2620. https://doi.org/10.1029/JZ069i012p02605

Bonner, J., Herrmann, R. B., Harkrider, D., and Pasyanos, M. (2008). The surface wave magnitude for the 9 October 2006 North Korean nuclear explosion. Bull. Seism. Soc. Am., 98(5), 2498–2506. https://doi.org/10.1785/0120080929

Bonner, J. L., Harkrider, D. G., Herrin, E. T., Shumway, R. H., Russell, S. A., and Tibuleac, I. M. (2003). Evaluation of short-period, near-regional Ms scales for the Nevada test site. Bull. Seism. Soc. Am., 93(4), 1773–1791. https://doi.org/10.1785/0120020240

Bonner, J. L., Russell, D. R., Harkrider D. G., and Herrmann, R. R. B. (2006). Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, part Ⅱ: Application and Ms–mb performance. Bull. Seism. Soc. Am., 96(2), 678–696. https://doi.org/10.1785/0120050056

Ceplecha, Z., and Revelle, D. O. (2005). Fragmentation model of meteoroid motion, mass loss, and radiation in the atmosphere. Meteor. Planet. Sci., 40(1), 35–54. https://doi.org/10.1111/j.1945-5100.2005.tb00363.x

Chernogor, L., and Rozumenko, V. (2013). The physical effects associated with Chelyabinsk meteorite’s passage. Probl. Atom. Sci. Technol., 86(4), 136–139

Chyba, C. F., Thomas, P. J., and Zahnle, K. J. (1993). The 1908 Tunguska explosion: atmospheric disruption of a stony asteroid. Nature, 361(6407), 40–44. https://doi.org/10.1038/361040a0

Edwards, W. N., Eaton, D. W., and Brown, P. G. (2008). Seismic observations of meteors: Coupling theory and observations. Rev. Geophys., 46(4), RG4007. https://doi.org/10.1029/2007RG000253

Emel’yanenko, V. V., Popova, O. P., Chugai, N. N., Shelyakov, M. A., Pakhomov, Y. V., Shustov, B. M., Shuvalov, V. V., Biryukov, E. E., Rybnov, Y. S., …Trubetskaya, I. A. (2013). Astronomical and physical aspects of the Chelyabinsk event (February 15, 2013). Solar Sys. Res., 47(4), 240–254. https://doi.org/10.1134/S0038094613040114

Fan, N., Zhao, L. F., Xie, X. B., and Yao, Z. X. (2013). Measurement of Rayleigh-wave magnitudes for North Korean nuclear tests. Chinese J. Geophys.(in Chinese) , 56(3), 906–915. https://doi.org/10.6038/cjg20130319

Gutenberg, B. (1945). Amplitudes of surface waves and magnitudes of shallow earthquakes. Bull. Seism. Soc. Am., 35(1), 3–12

Harkrider, D. G., Newton, C. A., and Flinn, E. A. (1974). Theoretical effect of yield and burst height of atmospheric explosions on Rayleigh wave amplitudes. Geophys. J. Int., 36(1), 191–225. https://doi.org/10.1111/j.1365-246X.1974.tb03632.x

Haskell, N. (1964). Radiation pattern of surface waves from point sources in a multi-layered medium. Bull. Seism. Soc. Am., 54(1), 377–393

Heimann, S., Gonzalez, A., Wang, R., Cesca, S., and Dahm, T. (2013). Seismic characterization of the Chelyabinsk meteor's terminal explosion. Seism. Res. Lett., 84(6), 1021–1025. https://doi.org/10.1785/0220130042

Krasnov, V. M., Drobzheva, Y. V., Salikhov, N. M., Zhumabaev, B. T., and Lazurkina, V. B. (2014). Estimation of the power of the Chelyabinsk meteoroid blast from optical, seismic, and infrasonic observation data. Acoust. Phys., 60(2), 155–162. https://doi.org/10.1134/S1063771014020110

Laske, G., Masters., G., Ma, Z. T., and Pasyanos, M. (2013). Update on CRUST1.0 - A 1-degree global model of earth's crust. Geophys. Res. Abstracts, 15, EGU2013–2658

Langston, C. A. (2004). Seismic ground motions from a bolide shock wave. J. Geophys. Res., 109(B12), B12309. https://doi.org/10.1029/2004JB003167

Le Pichon, A., Ceranna, L., Pilger, C., Mialle, P., Brown, D., Herry, P., and Brachet, N. (2013). The 2013 Russian fireball largest ever detected by CTBTO infrasound sensors. Geophys. Res. Lett., 40(14), 3732–3737. https://doi.org/10.1002/grl.50619

Lobanovsky, Y. I. (2014). Refined parameters of Chelyabinsk and Tunguska meteoroids and their explosion modes. arXiv preprint arXiv: 1403.7282.

Murphy, J. R., Barker, B. W., and Marshall, M. E. (1997). Event screening at the IDC using the Ms/mb discriminant, final report. Maxwell Technologies, pp 23.

Nuttli, O. W. (1986). Yield estimates of nevada test site explosions obtained from seismic Lg waves. J. Geophys. Res., 91(B2), 2137. https://doi.org/10.1029/JB091iB02p02137

Popova, O. P., Jenniskens, P., Emel’yanenko, V., Kartashova, A., Biryukov, E., Khaibrakhmanov, S., Shuvalov, V., Rybnov, Y., Dudorov, A., … Mikouchi, T. (2013). Chelyabinsk airburst, damage assessment, meteorite recovery, and characterization. Science, 342(6162), 1069–1073. https://doi.org/10.1126/science.1242642

Russell, D. R. (2006). Development of a time-domain, variable-period surface-wave magnitude measurement procedure for application at regional and teleseismic distances, Part I: theory. Bull. Seism. Soc. Am., 96(2), 665–677. https://doi.org/10.1785/0120050055

Seleznev, V. S., Liseikin, A. V., Emanov, A. A., and Belinskaya, A. Y. (2013). The Chelyabinsk meteoroid: A seismologist’s view. Doklady Earth Sci., 452(1), 976–978. https://doi.org/10.1134/S1028334X13090195

Stevens, J. L., and Murphy, J. R. (2001). Yield estimation from surface-wave amplitudes. Pure App. Geophys., 158, 2227–2251. https://doi.org/10.1007/PL00001147

Tauzin, B., Debayle, E., Quantin, C., and Coltice, N. (2013). Seismoacoustic coupling induced by the breakup of the 15 February 2013 Chelyabinsk meteor. Geophys. Res. Lett., 40(14), 3522–3526. https://doi.org/10.1002/grl.50683

Taylor , S. R., Yang, X. D., Phillips, W. S., Patton, H. J., Maceira, M., Hartse, H. E., and Randall, G. E. (2003). Regional event identification research in Eastern Asia. In Proceedings of the 25th Seismic Research Review-Nuclear Explosion Monitoring: Building the Knowledge Base, 23–25 September 2003, Tucson, Arizona, pp 476–485.

Wares, G. W., Champion, K. W., Pond, H. L., and Cole, A. E. (1960). Model Atmosphere in Handbook of Geophysics. New York: The MacMillan Co, pp 1–37.

Wang, C. Y., and Herrmann, R. B. (1980). A numerical study of P-, SV-, and SH-wave generation in a plane layered medium. Bull. Seism. Soc. Am., 70(4), 1015–1036

Zhao, L. F., Xie, X. B., Wang, W. M., and Yao, Z. X. (2008). Regional seismic characteristics of the 9 October 2006 North Korean nuclear test. Bull. Seism. Soc. Am., 98(6), 2571–2589. https://doi.org/10.1785/0120080128

Zhao, L. F., Xiao X. B., Wang W. M., and Yao Z. X. (2014). The 12 February 2013 North Korean underground nuclear test. Seism. Res. Lett., 85(1), 130–134. https://doi.org/10.1785/0220130103

Zhu, L. P., and Rivera, L. A. (2002). A note on the dynamic and static displacements from a point source in multilayered media. Geophys. J. Int., 148(3), 619–627. https://doi.org/10.1046/j.1365-246X.2002.01610.x

[1]

Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027

[2]

XueMei Zhang, GuangBao Du, Jie Liu, ZhiGao Yang, LiYe Zou, XiYan Wu, 2018: An M6.9 earthquake at Mainling, Tibet on Nov.18, 2017, Earth and Planetary Physics, 2, 84-85. doi: 10.26464/epp2018009

[3]

ZhiGao Yang, Jie Liu, Xue-Mei Zhang, WenZe Deng, GuangBao Du, XiYan Wu, 2021: A preliminary report of the Yangbi, Yunnan, MS6.4 earthquake of May 21, 2021, Earth and Planetary Physics, 5, 362-364. doi: 10.26464/epp2021036

[4]

YiJian Zhou, ShiYong Zhou, JianCang Zhuang, 2018: A test on methods for MC estimation based on earthquake catalog, Earth and Planetary Physics, 2, 150-162. doi: 10.26464/epp2018015

[5]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[6]

Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031

[7]

Ting Lei, HuaJian Yao, Chao Zhang, 2020: Effect of lateral heterogeneity on 2-D Rayleigh wave ZH ratio sensitivity kernels based on the adjoint method: Synthetic and inversion examples, Earth and Planetary Physics, 4, 513-522. doi: 10.26464/epp2020050

[8]

YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038

[9]

Yue Shen, QiuYu Wang, WeiLong Rao, WenKe Sun, 2022: Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China continent, Earth and Planetary Physics, 6, 96-107. doi: 10.26464/epp2022009

[10]

Quan-Zhi Ye, 2018: A preliminary analysis of the Shangri-La Bolide on 2017 Oct 4, Earth and Planetary Physics, , 170-172. doi: 10.26464/epp2018017

[11]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[12]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[13]

ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033

[14]

Kai Fan, XinLiang Gao, QuanMing Lu, Shui Wang, 2021: Study on electron stochastic motions in the magnetosonic wave field: Test particle simulations, Earth and Planetary Physics, 5, 592-600. doi: 10.26464/epp2021052

[15]

Yue Wu, Zheng Sheng, XinJie Zuo, 2022: Application of deep learning to estimate stratospheric gravity wave potential energy, Earth and Planetary Physics, 6, 70-82. doi: 10.26464/epp2022002

[16]

Chang Lai, PengWei Li, JiYao Xu, Wei Yuan, Jia Yue, Xiao Liu, Kogure Masaru, LiLi Qian, 2022: Joint observation of the concentric gravity wave event on the Tibetan Plateau, Earth and Planetary Physics, 6, 219-227. doi: 10.26464/epp2022029

[17]

BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001

[18]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[19]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[20]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao