Citation:
YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang,
2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309.
http://doi.org/10.26464/epp2018028
2018, 2(4): 303-309. doi: 10.26464/epp2018028
Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation
1. | State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China |
2. | College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China |
We present preliminary results of a new global Magnetohydrodynamics (MHD) simulation model of the Jovian magnetosphere. The model incorporates mass loading from Jupiter's satellite Io, the planet's fast corotation, and electrostatic coupling between its magnetosphere and ionosphere (M-I coupling). The basic configuration of the Jovian magnetosphere including the equatorial plasma flow pattern, the corotation enforcement current system, and the field aligned currents (FACs) in the ionosphere are presented under an antiparallel interplanetary magnetic field (IMF) condition. The simulation model results for equatorial density and pressure profiles are consistent with results from data-based empirical models. It is also found that there are similarities between the FACs distribution in the ionosphere and the observed aurora features, showing the potential application of the simple ionospheric model to the complicated M-I coupling. This model will help deepen our understanding of the global dynamics of the Jovian magnetosphere.
Bagenal, F., and Delamere, P. A. (2011). Flow of mass and energy in the magnetospheres of Jupiter and Saturn. J. Geophys. Res., 116(A5), A05209. https://doi.org/10.1029/2010JA016294 |
Chané, E., Saur, J., and Poedts, S. (2013). Modeling Jupiter's magnetosphere: Influence of the internal sources. J. Geophys. Res., 118(5), 2157–2172. https://doi.org/10.1002/jgra.50258 |
Florinski, V., Guo, X., Balsara, D. S., and Meyer, C. (2013). Magnetohydrodynamic modeling of solar system processes on geodesic grids. Astrophys. J. Supp. Ser., 205(2), 19. https://doi.org/10.1088/0067-0049/205/2/19 |
Frank, L. A., Paterson, W. R., and Khurana, K. K. (2002). Observations of thermal plasmas in Jupiter's magnetotail. J. Geophys. Res., 107(A1), SIA 1-1–SIA 1-15. https://doi.org/10.1029/2001JA000077 |
Fukazawa, K., Ogino, T., and Walker, R. J. (2005). Dynamics of the Jovian magnetosphere for northward interplanetary magnetic field (IMF). Geophys. Res. Lett., 32(3), L03202. https://doi.org/10.1029/2004GL021392 |
Guo, X. C. (2015). An extended HLLC Riemann solver for the magneto- hydrodynamics including strong internal magnetic field. J. Comput. Phys., 290, 352–363. https://doi.org/10.1016/j.jcp.2015.02.048 |
Guo, X. C., Florinski, V., and Wang, C. (2016). The HLLD Riemann solver based on magnetic field decomposition method for the numerical simulation of magneto-hydrodynamics. J. Comput. Phys., 327, 543–552. https://doi.org/10.1016/j.jcp.2016.09.057 |
Hill, T. W. (1979). Inertial limit on corotation. J. Geophys. Res., 84(A11), 6554–6558. https://doi.org/10.1029/JA084iA11p06554 |
Hu, Y. Q., Guo, X. C., and Wang, C. (2007). On the ionospheric and reconnection potentials of the earth: Results from global MHD simulations. J. Geophys. Res., 112(A7), A07215. https://doi.org/10.1029/2006JA012145 |
Jia, X. Z., Hansen, K. C., Gombosi, T. I., Kivelson, M. G., Tóth, G., DeZeeuw, D. L., and Ridley, A. J. (2012). Magnetospheric configuration and dynamics of Saturn's magnetosphere: A global MHD simulation. J. Geophys. Res., 117(A5), A05225. https://doi.org/10.1029/2012JA017575 |
Joy, S. P., Kivelson, M. G., Walker, R. J., Khurana, K. K., Russell, C. T., and Ogino, T. (2002). Probabilistic models of the jovian magnetopause and bow shock locations. J. Geophys. Res., 107(A10), 1309. https://doi.org/10.1029/2001JA009146 |
Khurana, K. K., Kivelson, M. G., Vasyliunas, V. M., Krupp, N., Woch, J., Lagg, A., Mauk, B. H., and Kurth, W. S. (2004). The configuration of Jupiter's magnetosphere. In F. Bagenal, et al. (Eds.), Jupiter. The Planet, Satellites and Magnetosphere (pp. 593–616). Cambridge, UK: Cambridge University Press.222 |
Krupp, N., Woch, J., Lagg, A., Roelof, E. C., Williams, D. J., Livi, S., and Wilken, B. (2001). Local time asymmetry of energetic ion anisotropies in the Jovian magnetosphere. Planet. Space Sci., 49(3-4), 283–289. https://doi.org/10.1016/S0032-0633(00)00149-5 |
Krupp, N., Vasyliunas, V. M., Woch, J., Lagg, A., Khurana, K. K., Kivelson, M. G., Mauk, B. H., Roelof, E. C., Williams, D. J., … and Paterson, W. R. (2004). Dynamics of the Jovian magnetosphere. In F. Bagenal, et al. (Eds.), Jupiter. The Planet, Satellites and Magnetosphere (pp. 617–638). Cambridge, UK: Cambridge University Press.222 |
Li, S. T. (2005). An HLLC Riemann solver for magneto-hydrodynamics. J. Comput. Phys., 203(1), 344–357. https://doi.org/10.1016/j.jcp.2004.08.020 |
Mauk, B. H., Mitchell, D. G., McEntire, R. W., Paranicas, C. P., Roelof, E. C., Williams, D. J., Krimigis, S. M., and Lagg, A. (2004). Energetic ion characteristics and neutral gas interactions in Jupiter's magnetosphere. J. Geophys. Res., 109(A9), A09S12. https://doi.org/10.1029/2003JA010270 |
Miyoshi, T., and Kusano, K. (1997). MHD simulation of a rapidly rotating magnetosphere interacting with the external plasma flow. Geophys. Res. Lett., 24(21), 2627–2630. https://doi.org/10.1029/97GL52739 |
Miyoshi, T., and Kusano, K. (2001). A global MHD simulation of the Jovian magnetosphere interacting with/without the interplanetary magnetic field. J. Geophys. Res., 106(A6), 10723–10742. https://doi.org/10.1029/2000JA900153 |
Miyoshi, T., and Kusano, K. (2005). A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics. J. Comput. Phys., 208(1), 315–344. https://doi.org/10.1016/j.jcp.2005.02.017 |
Moriguchi, T., Nakamizo, A., Tanaka, T., Obara, T., and Shimazu, H. (2008). Current systems in the Jovian magnetosphere. J. Geophys. Res., 113(A5), A05204. https://doi.org/10.1029/2007JA012751 |
Ogino, T., Walker, R. J., and Kivelson, M. G. (1998). A global magnetohydrodynamic simulation of the Jovian magnetosphere. J. Geophys. Res., 103(A1), 225–235. https://doi.org/10.1029/97JA02247 |
Palmaerts, B., Vogt, M. F., Krupp, N., Grodent, D., and Bonfond, B., (2017). Dawn-dusk asymmetries in Jupiter's magnetosphere. In: S. Haaland, et al. (Eds.), Dawn-Dusk Asymmetries in Planetary Plasma Environments (pp. 307–322). American Geophysical Union. https://doi.org/10.1002/9781119216346.ch24222 |
Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I., and De Zeeuw, D. L. (1999). A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys., 154(2), 284–309. https://doi.org/10.1006/jcph.1999.6299 |
Radioti, A., Gérard, J. C., Grodent, D., Bonfond, B., Krupp, N., and Woch, J. (2008). Discontinuity in Jupiter's main auroral oval. J. Geophys. Res., 113(A1), A01215. https://doi.org/10.1029/2007JA012610 |
Strobel, D. F., and Atreya, S. K. (1983). Ionosphere. In: Dessler, A. J. (Ed.), Physics of the Jovian Magnetosphere (pp. 51–67). New York: Cambridge University Press. https://doi.org/10.1006/jcph.1994.1071222 |
Tanaka, T. (1994). Finite volume TVD scheme on an unstructured grid system for three-dimensional MHD simulation of inhomogeneous systems including strong background potential fields. J. Comput. Phys., 111(2), 381–390. https://doi.org/10.1006/jcph.1994.1071 |
Vasyliunas, V. M. (1983). Plasma distribution and flow. In A. J. Dessler, (Ed.), Physics of the Jovian Magnetosphere (pp. 395–453). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511564574222 |
Walker, R. J., Ogino, T., and Kivelson, M. G. (2001). Magnetohydrodynamic simulations of the effects of the solar wind on the Jovian magnetosphere. Planet. Space Sci., 49(3-4), 237–245. https://doi.org/10.1016/S0032-0633(00)00145-8 |
Wang, C., Guo, X. C., Peng, Z., Tang, B. B., Sun, T. R., Li, W. Y., and Hu, Y. Q. (2013). Magnetohydrodynamics (MHD) numerical simulations on the interaction of the solar wind with the magnetosphere: A review. Sci. China: Earth Sci., 56(7), 1141–1157. https://doi.org/10.1007/s11430-013-4608-3 |
Welling, D. T., and Liemohn, M. W. (2014). Outflow in global magnetohydrodynamics as a function of a passive inner boundary source. J. Geophys. Res., 119(4), 2691–2705. https://doi.org/10.1002/2013JA019374 |
Woch, J., Krupp, N., Lagg, A., and Tomás, A. (2004). The structure and dynamics of the Jovian energetic particle distribution. Adv. Space Res., 33(11), 2030–2038. https://doi.org/10.1016/j.asr.2003.04.050 |
[1] |
ChongJing Yuan, YiQiao Zuo, Elias Roussos, Yong Wei, YiXin Hao, YiXin Sun, Norbert Krupp, 2021: Large-scale episodic enhancements of relativistic electron intensities in Jupiter's radiation belt, Earth and Planetary Physics, 5, 314-326. doi: 10.26464/epp2021037 |
[2] |
JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002 |
[3] |
Laurent Lamy, Baptiste Cecconi, Stéphane Aicardi, C. K. Louis, 2022: Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al., Earth and Planetary Physics, 6, 10-12. doi: 10.26464/epp2022018 |
[4] |
Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048 |
[5] |
Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001 |
[6] |
BaoHang Qu, JianYong Lu, Ming Wang, HuanZhi Yuan, Yue Zhou, HanXiao Zhang, 2021: Formation of the bow shock indentation: MHD simulation results, Earth and Planetary Physics, 5, 259-269. doi: 10.26464/epp2021033 |
[7] |
LongHui Yuan, YuFeng Lin, Chris A. Jones, 2021: Influence of reference states on Jupiter’s dynamo simulations, Earth and Planetary Physics, 5, 305-313. doi: 10.26464/epp2021041 |
[8] |
XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics, 5, 223-231. doi: 10.26464/epp2021024 |
[9] |
DongDong Ni, 2020: Signature of helium rain and dilute cores in Jupiter's interior from empirical equations of state, Earth and Planetary Physics, 4, 111-119. doi: 10.26464/epp2020017 |
[10] |
ZhongLei Gao, ZhenPeng Su, FuLiang Xiao, HuiNan Zheng, YuMing Wang, Shui Wang, H. E. Spence, G. D. Reeves, D. N. Baker, J. B. Blake, H. O. Funsten, 2018: Exohiss wave enhancement following substorm electron injection in the dayside magnetosphere, Earth and Planetary Physics, 2, 359-370. doi: 10.26464/epp2018033 |
[11] |
Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032 |
[12] |
QingHua Zhou, YunXiang Chen, FuLiang Xiao, Sai Zhang, Si Liu, Chang Yang, YiHua He, ZhongLei Gao, 2022: A machine-learning-based electron density (MLED) model in the inner magnetosphere, Earth and Planetary Physics, 6, 350-358. doi: 10.26464/epp2022036 |
[13] |
BinBin Ni, Jing Huang, YaSong Ge, Jun Cui, Yong Wei, XuDong Gu, Song Fu, Zheng Xiang, ZhengYu Zhao, 2018: Radiation belt electron scattering by whistler-mode chorus in the Jovian magnetosphere: Importance of ambient and wave parameters, Earth and Planetary Physics, 2, 1-14. doi: 10.26464/epp2018001 |
[14] |
Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020 |
[15] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[16] |
MingChen Sun, QingLin Zhu, Xiang Dong, JiaJi Wu, 2022: Analysis of inversion error characteristics of stellar occultation simulation data, Earth and Planetary Physics, 6, 61-69. doi: 10.26464/epp2022013 |
[17] |
Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics, 4, 223-230. doi: 10.26464/epp2020013 |
[18] |
Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006 |
[19] |
Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)