Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Franco, A. M.S., Echer, E., Bolzan, M. J. A., and Fraenz, M., 2022: Study of Mars Magnetosheath Fluctuations using the Kurtosis Technique: Mars Express Observations, Earth and Planetary Physics. http://doi.org/10.26464/epp2022006

doi: 10.26464/epp2022006

Study of Mars Magnetosheath Fluctuations using the Kurtosis Technique: Mars Express Observations

1 National Institute for Space Research (INPE), Sao Jose dos Campos, Brazil;

2 Federal University of Jatai, Jatai, Brazil;

3 Max Planck Institute for Solar System Research;

Corresponding author: Franco, adriane.marquesds@gmail.com

Fund Project: A.M.S.F thanks to FAPESP for PhD fellowship (projects 2016/10794-2 and 2017/00516-8) and CNPq agency (projects PQ-300969/2020-1, PQ-301542/2021-0) for the support. EE would like to thank to the Brazilian FAPESP (2018/21657-1) and CNPq (PQ-301883/2019-0) agencies for financial supports. The M. J. A. Bolzan was supported by CNPq agency contract number (PQ-305692/2018-6) and FAPEG agency contract number 2012.1026.7000905. The processing of Mars Express electron data was supported by German Space Agency grant 50QM1703.

Planetary magnetosheaths are characterized by a high plasma wave and turbulence activity. This is also observed for the induced magnetosphere of Mars where both upstream and locally generated plasma waves have been observed in the region between its bow shock and magnetic boundary layer, the magnetosheath. In this work, 12 years (2005-2016) of Mars Express (MEX) magnetosheath crossings have been used in order to conduct a statistical study of wave activity in the magnetosheath of Mars. Electron density and temperature measured by the electron spectrometer (ELS) of the plasma analyzer (ASPERA-3) experiment on board of MEX spacecraft were used in this study. The kurtosis parameter has been calculated for these plasma parameters. This value indicates intermittent behavior in the data when it is higher than 3 (the value for a normal or Gaussian distribution). The variation of wave activity occurrence has been analyzed in relation to solar cycle, Martian orbit and distance to the bow shock. It was observed non-Gaussian properties in the magnetosheath of Mars on all analyzed scales, especially in those near the proton gyrofrequency in the upstream region of the Martian magnetosphere. We also observed that it is higher on smaller scales (higher frequencies). A significant influence of the solar cycle was also observed, where the kurtosis parameter is higher during declining and solar maximum phases, where the presence of disturbed solar wind conditions, caused by large scale solar wind structures, increases. The kurtosis decreases with increasing distance from the bow shock, which indicates that the intermittence level is higher near the bow shock. In the electron temperature data the kurtosis is higher near the perihelion due to the higher incidence of EUV when the planet is closer to the Sun, which causes a more extended exosphere, and consequently increases the wave activity in the magnetosheath and its upstream region. The extended exosphere seems to play a lower effect in the electron density data.

Key words:

Acuña, M. H.; Connerney, J. E. P.; Wasilewski, P.; Lin, R. P.; Anderson, K. A.; Carlson, C. W.; Mcfadden, J.; Curtis, D. W.; Mitchell, D.; Reme, H.; Mazelle, C.; Sauvaud, J. A.; D’uston, C.; Cros, A.; Medale, J. L.; Bauer, S. J.; Cloutier, P.; Mayhew, M.; Winterhalter, D.; Ness, N. F. 1998. Magnetic field and plasma observations at Mars: initial results of the Mars Global Surveyor Mission. Science, v. 279, p. 1676-1680. Andrés, N.; Romanelli, N.; Hadid, L. Z.; Sahraoui, F.; DiBraccio, G.; Halekas, J., 2020. Solar wind turbulence around Mars: Relation between the energy cascade Rate and the Proton Cyclotron Waves Activity. The Astrophysical Journal, 902, 134, doi:10.3847/1538-4357/abb5a7. Balogh, A.; Bothmer, V.; Crooker, N. U. et al., 1999. The Solar Origin of Corotating Interaction Regions and Their Formation in the Inner Heliosphere. Space Science Reviews, v. 89, p. 141-178, doi:10.1023/A:1005245306874. Banerjee, S.; Zafer Hadid, L.; Sahraoui, F.; Galtier, S., 2016, Scaling of Compressible Magnetohydrodynamic Turbulence in the Fast Solar Wind. The Astrophysical Journal Letters. v. 829:L27, 5p, doi:10.3847/2041-8205/829/2/L27. Barabash, S.; Lundin, R.; Andersson, H. et al., 2004. ASPERA-3: Analyser of Space Plasmas and Energetic Ions for Mars Express. In: Mars Express: the scientific payload. Ed. by Andrew Wilson, scientific coordination: Agustin Chicarro. ESA SP-1240, Noordwijk, Netherlands: ESA Publications Division, ISBN 92-9092-556-6, p. 121 – 139. Barabash, S.; Lundin, R.; Andersson, H. et al., 2006. The Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) for the Mars Express Mission. Space Science Reviews. 126, 113–164, doi: 10.1007/s11214-006-9124-8 Bertucci, C., N. Romanelli, J. Y. Chaufray, D. Gomez, C. Mazelle, M. Delva, R. Modolo, F. González-Galindo, and D. A. Brain , 2013. Temporal variability of waves at the proton cyclotron frequency upstream from Mars: Implications for Mars distant hydrogen exosphere, Geophysical Research Letters, 40, 3809–3813, doi:10.1002/grl.50709. Bohlin, J. D. The physical properties of coronal holes. 1976. Physics of solar planetary environments: proceedings of the international symposium on solar terrestrial physics. Boulder, Colorado. v. 7, p. 114-128. Bolzan, M. J. A., Ramos, F. M., Sá, L. D. A., Rodrigues Neto, C., and Rosa, R. R., 2002. Analysis of fine‐scale canopy turbulence within and above an Amazon forest using Tsallis' generalized thermostatistics. Journal of Geophysical Research, 107( D20), 8063, doi:10.1029/2001JD000378. Bolzan, M. J. A.; Rosa, R. R., 2012. Multifractal analysis of interplanetary magnetic field obtained during CME events. Annales Geophysicae. 30, 1107-1112. doi:10.5194/angeo-30-1107-2012. Bolzan, M. J. A.; Echer, E., 2014. A multifractal approach applied to the magnetic field turbulence in Jupiter's magnetosheath, Planetary and Space Science, 91, 77-82, doi: 10.1016/j.pss.2013.12.004. Bolzan, M. J. A., 2018. A modeling substorm dynamics of the magnetosphere using self-organized criticality approach. Physica A-Statistical Mechanics and its Applications, 503, 1182-1188, doi: 10.1016/j.physa.2018.08.157. Bruno, R.; Carbone, V.; Bavassano, B.; Sorriso-Valvo, L., 2005. Observations of magnetohydrodhyanic turbulence in the 3D heliosphere. Advances in Space Research, 35, 5, 939-950, doi: 10.1016/j.asr.2005.01.106. Bruno, R., and Carbone, V., 2013. The solar wind as a turbulence laboratory. Living Reviews in Solar Physics, 10, 2, doi:10.12942/lrsp-2013-2. Chasapis, A.; Matthaeus, W. H.; Parashar, T. N. et al., 2017, Electron Heating at Kinetic Scales in Magnetosheath Turbulence. The Astrophysical Journal, 836:247 (8pp). Chhiber, R., Chasapis, A.; Bandyopadhyay, R.; Parashar, T. N.; Matthaeus, W. H.; Maruca, B. A.et al. (2018). Higher-order turbulence statistics in the Earth’s magnetosheath and the solar wind using Magnetospheric Multiscale observations. Journal of Geophysical Research: Space Physics. v. 123, p. 9941-9954. Chicarro, A., Martin, P., Trautner, R., 2004. The Mars Express Mission: an overview. In: Wilson, Andrew (Ed.), scientific coordination: Agustin Chicarro. Mars Express: The Scientific Payload. ESA SP-1240. ESA Publications Division, Noordwijk, Netherlands, pp. 3–16 (ISBN 92-9092-556-6). Collinson, G., Wilson, L. B. Iii,Omidi, N., Sibeck, D., Espley, J.,Fowler, C. M., et al. 2018. Solar wind induced waves in the skies of Mars: Ionospheric compression, energization, and escape resulting from the impact of ultra-low frequency magnetosonic waves generated upstream of the Martian bow shock. Journal of Geophysical Research: Space Physics, 123, doi:10.1029/2018JA025414. Cranmer, S.R. Coronal Holes. 2009. Living Rev. Sol. Phys. 6, 3. https://doi.org/10.12942/lrsp-2009-3. Cravens, T. E. 1997. Physics of solar system plasmas. Cambridge: England Cambridge University. 477306552 (Cambridge Atmospheric and Space Science Series), p. 343-356. DeCarlo, L. T., 1997. On the Meaning and Use of Kurtosis. Psychological Method. V. 2, n. 3, p. 292-307. Dwivedi, N.K., Kumar, S., Kovacs, P., Yordanova, E., Echim, M., Sharma, R. P., and, Khodachenko, M. L.; Sasunov, Y., 2019. Astrophysics and Space Science, 364, 6, A101, doi:10.1007/s10509-019-3592-2. Echer, E.; Gonzalez, W. D.; Guarnieri, F. L.; Dal Lago, A.; Vieira, L. E. A., 2005. Introduction to space weather. Advances in Space Research. 35, 855-865, doi:10.1016/j.asr.2005.02.098 Echer, E.; Bolzan, M. J. A.; Franco, A. M. S., 2020. Statistical analysis of solar wind parameter variation with heliospheric distance: Ulysses observations in the eliptic plane, Advances in Space Researh. doi:10.1016/j.asr.2020.03.036. Espley, J. R.; Cloutier, P. A.; Brain, D. A.; Crider, D. H.; Acuña, M. H., 2004. Observations of low-frequency magnetic oscillations in the Martian magnetosheath, magnetic pileup region and tail. Journal of Geophysical Research, v.109, p.1-12. Franco, A. M. S., 2018. A Study of Plasma Waves in the Induced Magnetospheres of Mars and Venus Thesis (Space Gephysics). National Institute for Space Research, São José dos Campos, Brazil. Franco, A. M. S.; Fraenz, M.; Echer, E.; Bolzan, M. J. A., 2019. Correlation length around Mars: A statistical study with MEX and MAVEN observations. Earth and Planetary Physics, 3, 560-569, doi:10.26464/epp2019051 Franco, A.M. S.; Fraenz, M.; Echer, E.; Bolzan, M. J. A., 2020. Wavelet analysis of low frequency plasma oscillations in the magnetosheath of Mars. Advances in Space Research, 65, 2090–2098, doi:10.1016/j.asr.2019.09.009. Fränz, M., Dubinin, E., Roussos, E. et al., 2006. Plasma Moments in the Environment of Mars. Space Sci Rev 126, 165–207. https://doi.org/10.1007/s11214-006-9115-9. Frisch, U., 1995. Turbulence: The Legacy of A. N. Kolmogorov (pp. I-Vi). Cambridge: Cambridge University Press, Cambridge, UK. Formisano, V., 1984. Solar wind interaction with planetary objects, Società Astronomica Italiana, Annual Meeting, 27th, Brescia, Italy, Oct. 21-23, 1983 Società Astronomica Italiana, Memorie (ISSN 0037-8720), vol. 55, no. 3, 1984, p. 511-514. Fowler, C. M.; Anderson, L.; Ergun, R. E.; Harada, Y.; Hara, T.; Collinson, G.; Peterson, W. K.; Espley, J.; Halekas, J.; Mcfadden, J.; Mitchell, D. L.; Mazelle, C.; Benna, M.; Jakosky, B. M., 2018. MAVEN observations of solar wind driven magnetosonic waves heating the Martian dayside ionosphere. Journal of Geophysical Research: Space Physics, 123, 4129–4149, doi:10.1029/2018JA025208. Greenstadt, E. W.; Le, G.; Strangeway, R. J., 1995. ULF Waves in the foreshock. Advances in Space Research, v. 15, p. 71-84. Habbal, Shadia & Woo, R. & Fineschi, Silvano & O'Neal, R. & Kohl, J. & Noci, G. & Korendyke, C.,1997. Origins of the Slow and the Ubiquitous Fast Solar Wind. The Astrophysical Journal. 489. 10.1086/310970. Hadid, L. Z.; Sahraoui, F., Galtier, S.; Huang, S. Y., 2018. Compressible Magnetohydrodynamic Turbulence in the Earth's Magnetosheath: Estimation of the Energy Cascade Rate Using in situ Spacecraft Data. Phys. Rev. Lett.. v. 120, Iss. 5-2. Halekas, J. S., et al. 2017. Structure, dynamics, and seasonal variability of the Mars-solar wind interaction: MAVEN Solar Wind Ion Analyzer in-flight performance and science results, J. Geophys. Res. Space Physics, 122, 547–578, doi:10.1002/2016JA023167. Hall, B. E. S., et al. (2016), Annual variations in the Martian bow shock location as observed by the Mars Express mission, J. Geophys. Res. Space Physics,. v. 121, n. 11, p. 474–11,494, doi:10.1002/2016JA023316. Hall, B. E. S., Sánchez‐Cano, B., Wild, J. A., Lester, M., & Holmstrom, M. (2019). The Martian bow shock over solar cycle 23–24 as observed by the Mars Express mission. Journal of Geophysical Research: Space Physics, 124, 4761–4772. https://doi.org/ 10.1029/2018JA026404. Han, X., Fraenz, M., Dubinin, E., et al., 2014. Discrepancy between ionopause and photoelectron boundary determined from mars boundary determined from Mars express measurements. Geophys. Res. Lett.. v. 41, p. 8221–8227. Hundhausen, A.J., 1972. Coronal Expansion and the Solar Wind, vol. 5 of Physics and Chemistry in Space, Springer, Berlin, p. 10-13. Kiyani, Khurom & Chapman, Sandra & Hnat, B. & Nicol, R. (2007). Self-Similar Signature of the Active Solar Corona within the Inertial Range of Solar-Wind Turbulence. Physical review letters. v. 98. 211101. 10.1103/PhysRevLett.98.211101. Kolmogorov, A. V., 1962. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number, J. Fluid Mech. v. 13, p. 82. Kozak, L. & Pilipenko, Viacheslav & Chugunova, O. & Kozak, P.., 2011. Statistical analysis of turbulence in the foreshock region and in the Earth’s magnetosheath. Cosmic Research. v. 49, p. 194-204. 10.1134/S0010952511030063. Krieger, A. S.; Timothy, A. F.; Roelof, E. C., 1973. A coronal hole and its identification as the source of a high velocity solar winde stream. Sol. Phys , v. 29, p. 505-525. Lacombe, C.; Belmont, G., 1995. Waves in the Earth's magnetosheath: Observations and interpretations. Advances in Space Research. v 15, I 8–9, p. 329-340. Leckband, J.A.; Burgess, D.; Pantellini, F.G.E.; Schwartz, S. J. 1995. Ion distributions associated with mirror waves in the Earth's magnetosheath. Advances in Space Research. v. 15, p. 345-348. Luhmann, J.G., Russell, C.T., Elphic, R.C., 1986. Spatial distributions of magnetic field fluctuations in the dayside magnetosheath. J. Geophys. Res. 91, 1711. Luhmann, J. G. et al. 1987. Characteristics of the Mars-like limit of the Venus-solar wind interaction. Journal of Geophysical Research, v. 92, p. 8545-8557. Luhmann, J. G., Russell, C. T., Brace, L. H., and Vaisberg, O. L. 1992. The intrinsic magnetic field and solar wind interaction of Mars. In H. Kieffer, et al. (Eds.), Mars (pp. 1090-1134). Tucson, Arizona: University of Arizona Press. Luhmann, J. G., Ledvina, S. A., and Russell, C. T. 2004. Induced magnetospheres. Adv. Space Res., 33(11), 1905–1912. https://doi.org/10.1016/j.asr.2003.03.031 Lundin, Rickard & Barabash, Stas & Holmström, M. & Nilsson, Hans & Futaana, Yoshifumi & Ramstad, Robin & Yamauchi, M. & Dubinin, Eduard & Fraenz, M.. 2013. Solar cycle effects on the ion escape from Mars. Geophysical Research Letters. v. 40. 10.1002/2013GL058154. Macek, Wiesław & Wawrzaszek, Anna & Kucharuk, Beata, 2017. Intermittent turbulence in the heliosheath and the magneto sheath plasmas based on Voyager and THEMIS data. Nonlinear Processes in Geophysics Discussions. 1-18. 10.5194/npg-2017-41. Matthaeus WH, Wan M, Servidio S, Greco A, Osman KT, Oughton S, Dmitruk P. 2015 Intermittency, nonlinear dynamics and dissipation in the solar wind and astrophysical plasmas. Phil. Trans. R. Soc. A, 373: 20140154, doi:10.1098/rsta.2014.0154. Modolo, R.; Chanteur, G. M.; Dubinin, E.; Matthews, A. P., 2005. Influence of the Solar EUV Flux on the Martian Plasma Environment. Annales Geophysicae, v. 23, p. 433-444. Nagy, A.F.; Winterhalter, D.; Sauer, K.; Cravens, T.E.; Brecht,S.; Mazelle, C.; Crider, D.; Kallio, E.; Zakharov, E.; Dubinin, E.; Verigin, M.; Kotova, G.; Axford, W.I.; Bertucci, C. ; Trotignon, J.G. 2004. The plasma environment of Mars. Space Science Reviews, v.111, p. 33– 114. Osmane, A.; Dimmock, A. P.; Pulkkinen, T. I., 2015. Universal properties of mirror mode turbulence in the Earth’s magnetosheath, Geophys. Res. Lett.. v. 42, p. 3085–3092, doi:10.1002/2015GL063771. Opgenoorth, H. J.; Andrews, D. J.; Fränz, M.; Lester, M.; Edberg, N. J. T.; Morgan, D.; Duru, F.; Witasse, O.; Williams, A. O. , 2013. Mars ionospheric response to solar wind variability. Journal of Geophysiscal Research: Space Physics, 118, 6558– 6587, doi:10.1002/jgra.50537. Ramos, F. M.; Rosa, R. R.; Rodrigues Neto, C.; Bolzan, M. J. A.; Sá, L. D. A.; Velho, H. F. C., 2001. Non-extensive statistics and three-dimensional fully developed turbulence. Physica A, 295, 250-253, doi:10.1016/S0378-4371(01)00083-8 Ramstad, R.; Barabash, S.; Futaana, Y.; Holmstoem, M. , 2017. Solar wind and EUV-dependent models for the shapes of the Martian plasma boundaries based on Mars Express measurements. Journal of Geophysical Research, v.122, p.7279-7290. Ruhunusiri, S., J. S. Halekas, J. E. P. Connerney, J. R. Espley, J. P. McFadden, D. E. Larson, D. L. Mitchell, C. Mazelle, and B. M. Jakosky (2015), Low-frequency waves in the Martian magnetosphere and their response to upstream solar wind driving conditions, Geophys. Res. Lett., 42, 8917–8924, doi:10.1002/2015GL064968. Ruhunusiri,S.; Halekas, J.S.; Connerney, J. E. P.; Espley, J. R.; McFadden, J. P.; Larson, D. E.; Mitchell, D. L.; Mazelle, C.; Jakosky, B. M., 2015. Low-frequency waves in theMartian magnetosphere and theirresponse to upstream solar winddriving conditions, Geophys.Res. Lett.. v. 42, p. 8917–8924,doi:10.1002/2015GL064968. Ruhunusiri, S., et al. 2017. Characterization of turbulence in the Mars plasma environment with MAVEN observations, J. Geophys. Res. Space Physics, v. 122, doi:10.1002/2016JA023456. Richardson, J. D., 2002. The magnetosheaths of the outer planets. Planetary and Space Science, v. 50, p. 503-517. Russell, C.T., Luhmann, J.G., Schwingenschuh, K., Riedler, W., Yeroshenko, Y., 1990. Upstream waves at Mars: phobos observations. Geophys. Res. Lett.. v.17, p. 897–900. Shan, L.; Lu, Q.; Mazelle, C.; Huang, C.; Zhang, T.; Wu, M.; Gao, X.; Wang, S. 2015. The shape of the venusian bow shock at solar minimum and maximum: revisit based on VEX observations. Planetary and Space Science, v.109/110, p. 32-37. Sheeley Jr., N.R.; Harvey, J. W.; Feldman, W. C., 1976. Coronal holes, solar wind streams, and recurrent geomagnetic disturbances: 1973-1976. Solar Phys. v. 49, p. 271-27. Schwartz, S.J., Burgess, D., and Moses, J.J., Low-frequency waves in the Earth’s magnetosheath: Present status, Ann. Geophys., 1996, vol. 14, pp. 1134–1150. Schwenn, R., 2006. Space Weather: The Solar Perspective. Living Rev. Sol. Phys.. v. 3, 2. https://doi.org/10.12942/lrsp-2006-2. Sciffer, M. D.; Waters, C. L.; Menk, F. W., 2004. Propagation of ULF waves through the ionosphere: inductive effect of oblique magnetic field. Annales Geophysicae, v. 22, p. 1155-1169. Tsurutani, B. T., and Rodriguez, P., 1981. Upstream waves and particles: An overview of ISEE results, J. Geophys. Res., 86( A6), 4317– 4324,doi:10.1029/JA086iA06p04317. Warhaft, Z. 2000, Passive Scalars in Turbulent Flows. Annual Review of Fluid mechanics. v. 31, p. 203-240. Withers,P., Matta, M., Lester, M. et al., 2016. The morphology of the topside ionosphere of Mars under different solar wind conditions: Results of a multi-instrument observing campaign by Mars Express in 2010, Planetary and Space Science, v. 120, p. 24-34.

[1]

Adriane Marques de Souza Franco, Markus Fränz, Ezequiel Echer, Mauricio José Alves Bolzan, 2019: Correlation length around Mars: A statistical study with MEX and MAVEN observations, Earth and Planetary Physics, 3, 560-569. doi: 10.26464/epp2019051

[2]

JunFeng Qin, Hong Zou, YuGuang Ye, YongQiang Hao, JinSong Wang, Erling Nielsen, 2020: A method of estimating the Martian neutral atmospheric density at 130 km, and comparison of its results with Mars Global Surveyor and Mars Odyssey aerobraking observations based on the Mars Climate Database outputs, Earth and Planetary Physics, 4, 408-419. doi: 10.26464/epp2020038

[3]

SuDong Xiao, MingYu Wu, GuoQiang Wang, Geng Wang, YuanQiang Chen, TieLong Zhang, 2020: Turbulence in the near-Venusian space: Venus Express observations, Earth and Planetary Physics, 4, 82-87. doi: 10.26464/epp2020012

[4]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[5]

X.-D. Wang, B. Klecker, G. Nicolaou, S. Barabash, M. Wieser, P. Wurz, A. Galli, F. Cipriani, and Y. Futaana, 2022: Neutralized Solar Energetic Particles for SEP Forecasting: Feasibility Study of an Innovative Technique for Space Weather Applications, Earth and Planetary Physics. doi: 10.26464/epp2022003

[6]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[7]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[8]

ShuWen Tang, Yi Wang, HongYun Zhao, Fang Fang, Yi Qian, YongJie Zhang, HaiBo Yang, CunHui Li, Qiang Fu, Jie Kong, XiangYu Hu, Hong Su, ZhiYu Sun, YuHong Yu, BaoMing Zhang, Yu Sun, ZhiPeng Sun, 2020: Calibration of Mars Energetic Particle Analyzer (MEPA), Earth and Planetary Physics, 4, 355-363. doi: 10.26464/epp2020055

[9]

D. Singh, S. Uttam, 2022: Thermal Inertia at the MSL and InSight Mission Sites on Mars, Earth and Planetary Physics. doi: 10.26464/epp2022004

[10]

LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053

[11]

Kai Liu, XinJun Hao, YiRen Li, TieLong Zhang, ZongHao Pan, ManMing Chen, XiaoWen Hu, Xin Li, ChengLong Shen, YuMing Wang, 2020: Mars Orbiter magnetometer of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 384-389. doi: 10.26464/epp2020058

[12]

Bin Zhou, ShaoXiang Shen, Wei Lu, YuXi Li, Qing Liu, ChuanJun Tang, ShiDong Li, GuangYou Fang, 2020: The Mars rover subsurface penetrating radar onboard China's Mars 2020 mission, Earth and Planetary Physics, 4, 345-354. doi: 10.26464/epp2020054

[13]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062

[14]

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao, 2020: Effects of a dipole-like crustal field on solar wind interaction with Mars, Earth and Planetary Physics, 4, 23-31. doi: 10.26464/epp2020005

[15]

YongQing Peng, LeiBo Zhang, ZhiGuo Cai, ZhaoGang Wang, HaiLong Jiao, DongLi Wang, XianTao Yang, LianGuo Wang, Xu Tan, Feng Wang, Jing Fang, ZhouLu Sun, HongLiang Feng, XiaoRui Huang, Yan Zhu, Ming Chen, LiangHai Li, YanHua Li, 2020: Overview of the Mars climate station for Tianwen-1 mission, Earth and Planetary Physics, 4, 371-383. doi: 10.26464/epp2020057

[16]

ZiChuan Li, Jun Cui, Jing Li, XiaoShu Wu, JiaHao Zhong, FaYu Jiang, 2020: Solar control of CO2 + ultraviolet doublet emission on Mars, Earth and Planetary Physics, 4, 543-549. doi: 10.26464/epp2020064

[17]

Jun Cui, ZhaoJin Rong, Yong Wei, YuMing Wang, 2020: Recent investigations of the near-Mars space environment by the planetary aeronomy and space physics community in China, Earth and Planetary Physics, 4, 1-3. doi: 10.26464/epp2020001

[18]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[19]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[20]

GuoBin Yu, EnHai Liu, GuangLin Liu, Li Zhou, JunZhe Zeng, YuanPei Chen, XiangDong Zhou, RuJin Zhao, ShunYi Zhu, 2020: Moderate Resolution Imaging Camera (MoRIC) of China’s First Mars Mission Tianwen-1, Earth and Planetary Physics, 4, 364-370. doi: 10.26464/epp2020056

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Study of Mars Magnetosheath Fluctuations using the Kurtosis Technique: Mars Express Observations

Franco, A. M.S., Echer, E., Bolzan, M. J. A., and Fraenz, M.