Citation:
Du, Q. Z., Wang, W. Y., Sun, W. H., and Fu, L.-Y. (2022). Seismic attenuation compensation with spectral-shaping regularization. Earth Planet. Phys., 6(3), 259–274. http://doi.org/10.26464/epp2022024
2022, 6(3): 259-274. doi: 10.26464/epp2022024
Seismic attenuation compensation with spectral-shaping regularization
1. | Shandong Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China |
2. | Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China |
3. | Key Laboratory of Geophysical Prospecting, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266580, China |
4. | Department of Physics, University of Alberta, Edmonton, AB, T6G 2EI, Canada |
Because of the viscoelasticity of the subsurface medium, seismic waves will inherently attenuate during propagation, which lowers the resolution of the acquired seismic records. Inverse-Q filtering, as a typical approach to compensating for seismic attenuation, can efficiently recover high-resolution seismic data from attenuation. Whereas most efforts are focused on compensating for high-frequency energy and improving the stability of amplitude compensation by inverse-Q filtering, low-frequency leakage may occur as the high-frequency component is boosted. In this article, we propose a compensation scheme that promotes the preservation of low-frequency energy in the seismic data. We constructed an adaptive shaping operator based on spectral-shaping regularization by tailoring the frequency spectra of the seismic data. We then performed inverse-Q filtering in an inversion scheme. This data-driven shaping operator can regularize and balance the spectral-energy distribution for the compensated records and can maintain the low-frequency ratio by constraining the overcompensation for high-frequency energy. Synthetic tests and applications on prestack common-reflection-point gathers indicated that the proposed method can preserve the relative energy of low-frequency components while fulfilling stable high-frequency compensation.
Bai, M., Chen, X. H., Wu, J., Chen, Y. K., Liu, G. C., and Wang, E. J. (2016). Multiple-component Gaussian beam reverse-time migration based on attenuation compensation. Chin. J. Geophys. (in Chinese) |
Bai, T., Tsvankin, I., and Wu, X. M. (2017). Waveform inversion for attenuation estimation in anisotropic media. Geophysics, 82(4), WA83–WA93. https://doi.org/10.1190/geo2016-0596.1 |
Bickel, S. H., and Natarajan, R. R. (1985). Plane-wave Q deconvolution. Geophysics, 50(9), 1426–1439. https://doi.org/10.1190/1.1442011 |
Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28(2), 179–191. https://doi.org/10.1121/1.1908241 |
Blanch, J. O., Robertsson, J. O. A., and Symes, W. W. (1995). Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics, 60(1), 176–184. https://doi.org/10.1190/1.1443744 |
Braga, I. L. S., and Moraes, F. S. (2013). High-resolution gathers by inverse Q filtering in the wavelet domain. Geophysics, 78(2), V53–V61. https://doi.org/10.1190/geo2011-0508.1 |
Brzostowski, M. A., and McMechan, G. A. (1992). 3-D tomographic imaging of near-surface seismic velocity and attenuation. Geophysics, 57(3), 396–403. https://doi.org/10.1190/1.1443254 |
Carcione, J. M., Kosloff, D., and Kosloff, R. (1988). Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int., 93(2), 393–401. https://doi.org/10.1111/j.1365-246X.1988.tb02010.x |
Carcione, J. M., Cavallini, F., Mainardi, F., and Hanyga, A. (2002). Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure Appl. Geophys., 159(7), 1719–1736. https://doi.org/10.1007/s00024-002-8705-z |
Chang, W. F., and McMechan, G. A. (1994). 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4), 597–609. https://doi.org/10.1190/1.1443620 |
Chen, S. Q., Wei, Q., Liu, L. B., and Li, X. Y. (2018). Data-driven attenuation compensation via a shaping regularization scheme. IEEE Geosci. Remote Sens. Lett., 15(11), 1667–1671. https://doi.org/10.1109/LGRS.2018.2854731 |
Chernov, L. A. (1960). Wave Propagation in a Random Medium (Silverman, R. A., trans.). New York: McGraw-Hill.222 |
Dasgupta, R., and Clark, R. A. (1998). Estimation of Q from surface seismic reflection data. Geophysics, 63(6), 2120–2128. https://doi.org/10.1190/1.1444505 |
Deng, F., and McMechan, G. A. (2007). True-amplitude prestack depth migration. Geophysics, 72(3), S155–S166. https://doi.org/10.1190/1.2714334 |
Ding, Y., Du, Q. Z., Liu, L. H., and Zhang, Q. (2019). Feature analysis and compensation of seismic low-frequency based on compressed sensing and broad-band Yu-type low-passing shaping filter. Chin. J. Geophys. (in Chinese) |
Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126 |
Du, Q. Z., Zhu, Y. T., and Ba, J. (2012). Polarity reversal correction for elastic reverse time migration. Geophysics, 77(2), S31–S41. https://doi.org/10.1190/geo2011-0348.1 |
Du, Q. Z., Guo, C. F., Zhao, Q., Gong, X. F., Wang, C. X., and Li, X. Y. (2017). Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics, 82(2), S111–S127. https://doi.org/10.1190/geo2016-0146.1 |
Dutta, G., and Schuster, G. T. (2016). Wave-equation Q tomography. Geophysics, 81(6), R471–R484. https://doi.org/10.1190/geo2016-0081.1 |
Fomel, S. (2007). Shaping regularization in geophysical-estimation problems. Geophysics, 72(2), R29–R36. https://doi.org/10.1190/1.2433716 |
Futterman, W. I. (1962). Dispersive body waves. J. Geophys. Res., 67(13), 5279–5291. https://doi.org/10.1029/JZ067i013p05279 |
Guo, P., McMechan, G. A., and Guan, H. M. (2016). Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics, 81(5), S281–S297. https://doi.org/10.1190/geo2015-0557.1 |
Hale, D. (1981). An inverse Q-filter. Stanford Exploration Project 26. 231–244. http://sep.stanford.edu/data/media/public/oldreports/oldreports/sep26/26_22.ps.gz222 |
Hale, D. (1982). Q-adaptive deconvolution. In Proceedings of 1982 SEG Annual Meeting (pp. 82–83). Dallas, Texas: Society of Exploration Geophysicists.222 |
Hargreaves, N. D., and Calvert, A. J. (1991). Inverse Q filtering by Fourier transform. Geophysics, 56(4), 519–527. https://doi.org/10.1190/1.1443067 |
Hestenes, M. R., and Steifel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436. https://doi.org/10.6028/jres.049.044 |
Julian, B. R., Gubbins, D. (1977). Three-dimensional seismic ray tracing. J. Geophys., 43(1), 95–113. https://journal.geophysicsjournal.com/JofG/article/view/133222 |
Kamei, R., and Pratt, R. G. (2008). Waveform tomography strategies for imaging attenuation structure with cross-hole data. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008. Rome, Italy, EAGE. https://doi.org/10.3997/2214-4609.20147680 |
Kamei, R., and Pratt, R. G. (2013). Inversion strategies for visco-acoustic waveform inversion. Geophys. J. Int., 194(2), 859–884. https://doi.org/10.1093/gji/ggt109 |
Kjartansson, E. (1979). Constant Q-wave propagation and attenuation. J. Geophys. Res., 84(B9), 4737–4748. https://doi.org/10.1029/JB084iB09p04737 |
Kolsky, H. (1953). Stress Waves in Solids. Oxford: Clarendon Press.222 |
Kolsky, H. (1956). LXXI. The propagation of stress pulses in viscoelastic solids. Philos. Mag., 1(8), 693–710. https://doi.org/10.1080/14786435608238144 |
Li, G. F., Liu, Y., Zheng, H., and Huang, W. (2015). Absorption decomposition and compensation via a two-step scheme. Geophysics, 80(6), V145–V155. https://doi.org/10.1190/geo2015-0038.1 |
Li, Q. Z. (1993). A Systematical Analysis of High Resolution Seismic Exploration (in Chinese). Beijing: Petroleum Industry Press.222 |
Li, Q. Z. (2017). High-Resolution Seismic Exploration. Tulsa, Oklahoma: Society of Exploration Geophysicists.222 |
Liao, O. B., and McMechan, G. A. (1995). 2.5D full-wavefield viscoacoustic inversion. Geophys. Prospect., 43(8), 1043–1059. https://doi.org/10.1111/j.1365-2478.1995.tb00295.x |
Liu, Y. S., Xu, T., Wang, Y. H., Teng, J. W., Badal, J., and Lan, H. Q. (2019). An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method. Earth Planet. Phys., 3(4), 342–357. https://doi.org/10.26464/epp2019035 |
Margrave, G. F., Lamoureux, M. P., and Henley, D. C. (2011). Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics, 76(3), W15–W30. https://doi.org/10.1190/1.3560167 |
Margrave, G. F., Lamoureux, M. P., Grossman, J. P., and Iliescu, V. (2002). Gabor deconvolution of seismic data for source waveform and Q correction. In Proceedings of 2002 SEG Annual Meeting (pp. 2190–2193). Salt Lake City, Utah: Society of Exploration Geophysicists.222 |
Mavko, G., and Nur, A. (1975). Melt squirt in the asthenosphere. J. Geophys. Res., 80(11), 1444–1448. https://doi.org/10.1029/JB080i011p01444 |
Mittet, R., Sollie, R., and Hokstad, K. (1995). Prestack depth migration with compensation for absorption and dispersion. Geophysics, 60(5), 1485–1494. https://doi.org/10.1190/1.1443882 |
Quan, Y. L., and Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method. Geophysics, 62(3), 895–905. https://doi.org/10.1190/1.1444197 |
Rao, Y., and Wang, Y. H. (2019). Stabilised inverse-Q filtering for seismic characterisation of carbonate reservoirs. J. Geophys. Eng., 16(1), 190–197. https://doi.org/10.1093/jge/gxy016 |
Robertsson, J. O., Blanch, J. O., and Symes, W. W. (1994). Viscoelastic finite-difference modeling. Geophysics, 59(9), 1444–1456. https://doi.org/10.1190/1.1443701 |
Shen, Y., Biondi, B., Clapp, R., and Nichols, D. (2014). Wave-equation migration Q analysis (WEMQA). In Proceedings of 2014 SEG Annual Meeting (pp. 3757–3762). Denver, Colorado: Society of Exploration Geophysicists.222 |
Shen, Y., Biondi, B., and Clapp, R. (2018). Q-model building using one-way wave-equation migration Q analysis—Part 1: theory and synthetic test. Geophysics, 83(2), S93–S109. https://doi.org/10.1190/geo2016-0658.1 |
Shi, X. C., Mao, W. J., and Li, X. L. (2019). Viscoelastic Q-compensated Gaussian beam migration based on vector-wave imaging. Chin. J. Geophys., 64(4), 1480–1491. https://doi.org/10.6038/cjg2019L0797 |
Stolt, R. H. (1978). Migration by Fourier transform. Geophysics, 43(1), 23–48. https://doi.org/10.1190/1.1440826 |
Sun, J. Z., Zhu, T. Y., and Fomel, S. (2015). Viscoacoustic modeling and imaging using low-rank approximation. Geophysics, 80(5), A103–A108. https://doi.org/10.1190/geo2015-0083.1 |
Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl., 4, 1035–1038. https://ci.nii.ac.jp/naid/10006420921/222 |
Tonn, R. (1991). The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods. Geophys. Prospect., 39(1), 1–27. https://doi.org/10.1111/j.1365-2478.1991.tb00298.x |
Traynin, P., Liu, J., and Reilly, J. M. (2008). Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration. In Proceedings of 2008 SEG Annual Meeting (pp. 2412–2416). Las Vegas, Nevada: Society of Exploration Geophysicists.222 |
Treeby, B. E., and Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am., 127(5), 2741–2748. https://doi.org/10.1121/1.3377056 |
Varela, C. L., Rosa, A. L. R., and Ulrych, T. J. (1993). Modeling of attenuation and dispersion. Geophysics, 58(8), 1167–1173. https://doi.org/10.1190/1.1443500 |
Wang, B. F., Chen, X. H., Li, J. Y., Chen, Z. B., and Liu, G. C. (2015). A stable and efficient attenuation compensation method based on inversion. Chin. J. Geophys., 58(4), 375–386. https://doi.org/10.1002/cjg2.20181 |
Wang, B. F., and Lu, W. K. (2018). An efficient amplitude-preserving generalized S transform and its application in seismic data attenuation compensation. IEEE Trans. Geosci. Remote Sens., 56(2), 859–866. https://doi.org/10.1109/TGRS.2017.2755666 |
Wang, S. D. (2011). Attenuation compensation method based on inversion. Appl. Geophys., 8(2), 150–157. https://doi.org/10.1007/s11770-011-0275-3 |
Wang, S. D., and Chen, X. H. (2014). Absorption-compensation method by l1-norm regularization. Geophysics, 79(3), V107–V114. https://doi.org/10.1190/geo2013-0206.1 |
Wang, Y. F., Ma, X., Zhou, H., and Chen, Y. K. (2018). L1-2 minimization for exact and stable seismic attenuation compensation. Geophys. J. Int., 213(3), 1629–1646. https://doi.org/10.1093/gji/ggy064 |
Wang, Y. H. (2002). A stable and efficient approach of inverse Q filtering. Geophysics, 67(2), 657–663. https://doi.org/10.1190/1.1468627 |
Wang, Y. H. (2003). Quantifying the effectiveness of stabilized inverse Q filtering. Geophysics, 68(1), 337–345. https://doi.org/10.1190/1.1543219 |
Wang, Y. H. (2004). Q analysis on reflection seismic data. Geophys. Res. Lett., 31(17), L17606. https://doi.org/10.1029/2004GL020572 |
Wang, Y. H., and Guo, J. (2004a). Modified Kolsky model for seismic attenuation and dispersion. J. Geophys. Eng., 1(3), 187–196. https://doi.org/10.1088/1742-2132/1/3/003 |
Wang, Y. H., and Guo, J. (2004b). Seismic migration with inverse Q filtering. Geophys. Res. Lett., 31(21), L21608. https://doi.org/10.1029/2004GL020525 |
Wang, Y. H. (2006). Inverse Q-filter for seismic resolution enhancement. Geophysics, 71(3), V51–V60. https://doi.org/10.1190/1.2192912 |
Wang, Y. H. (2008). Seismic Inverse Q Filtering. Singapore: Blackwell Publishing.222 |
Xie, Y., Xin, K. F., Sun, J., Notfors, C., Biswal, A. K., and Balasubramaniam, M. K. (2009). 3D prestack depth migration with compensation for frequency dependent absorption and dispersion. In Proceedings of 2009 SEG Annual Meeting (pp. 2919–2923). Houston, Texas: Society of Exploration Geophysicists.222 |
Xu, Y., and Chopra, S. (2007). Improving AVO fidelity by NMO stretching and offset-dependent tuning corrections. Lead. Edge, 26(12), 1548–1551. https://doi.org/10.1190/1.2821941 |
Xue, Y. J., Cao, J. X., and Wang, X. J. (2019). Inverse Q filtering via synchrosqueezed wavelet transform. Geophysics, 84(2), V121–V132. https://doi.org/10.1190/geo2018-0177.1 |
Yan, H. Y., and Liu, Y. (2009). Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves. Appl. Geophys., 6(1), 59–69. https://doi.org/10.1007/s11770-009-0009-y |
Yilmaz, Ö. (2001). Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Tulsa, Oklahoma: Society of Exploration Geophysicists.222 |
Yuan, S. Y., Wang, S. X., Ma, M., Ji, Y. Z., and Deng, L. (2017). Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans. Geosci. Remote Sens., 55(11), 6182–6194. https://doi.org/10.1109/TGRS.2017.2722223 |
Zhang, B. L., Ni, S. D., and Chen, Y. L. (2019). Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys., 3(6), 537–546. https://doi.org/10.26464/epp2019055 |
Zhang, C. J., and Ulrych, T. J. (2007). Seismic absorption compensation: a least squares inverse scheme. Geophysics, 72(6), R109–R114. https://doi.org/10.1190/1.2766467 |
Zhang, G. W., and Gao, J. H. (2018). Inversion-driven attenuation compensation using synchrosqueezing transform. IEEE Geosci. Remote Sens. Lett., 15(1), 132–136. https://doi.org/10.1109/LGRS.2017.2777598 |
Zhang, J. F., and Wapenaar, K. (2002). Wavefield extrapolation and prestack depth migration in anelastic inhomogeneous media. Geophys. Prospect., 50(6), 629–643. https://doi.org/10.1046/j.1365-2478.2002.00342.x |
Zhang, J. F., Wu, J. Z., and Li, X. Y. (2013). Compensation for absorption and dispersion in prestack migration: an effective Q approach. Geophysics, 78(1), S1–S14. https://doi.org/10.1190/geo2012-0128.1 |
Zhang, Y., Zhang, P., and Zhang, H. Z. (2010). Compensating for visco-acoustic effects in reverse-time migration. In Proceedings of 2010 SEG Annual Meeting (pp. 3160–3164). Denver, Colorado: Society of Exploration Geophysicists.222 |
Zhu, T. Y., and Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/geo2013-0245.1 |
[1] |
BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055 |
[2] |
Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013 |
[3] |
Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007 |
[4] |
Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030 |
[5] |
Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035 |
[6] |
Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016 |
[7] |
Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040 |
[8] |
BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025 |
[9] |
TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004 |
[10] |
WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030 |
[11] |
Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039 |
[12] |
Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025 |
[13] |
YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056 |
[14] |
Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048 |
[15] |
YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035 |
[16] |
Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054 |
[17] |
XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017 |
[18] |
Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu, 2022: Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA, Earth and Planetary Physics. doi: 10.26464/epp2022030 |
[19] |
QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020 |
[20] |
Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)