Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Du, Q. Z., Wang, W. Y., Sun, W. H., and Fu, L.-Y. (2022). Seismic attenuation compensation with spectral-shaping regularization. Earth Planet. Phys., 6(3), 259–274. http://doi.org/10.26464/epp2022024

2022, 6(3): 259-274. doi: 10.26464/epp2022024

SOLID EARTH: EXPLORATION GEOPHYSICS

Seismic attenuation compensation with spectral-shaping regularization

1. 

Shandong Provincial Key Laboratory of Deep Oil & Gas, China University of Petroleum (East China), Qingdao 266580, China

2. 

Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

3. 

Key Laboratory of Geophysical Prospecting, China National Petroleum Corporation (CNPC), China University of Petroleum (East China), Qingdao 266580, China

4. 

Department of Physics, University of Alberta, Edmonton, AB, T6G 2EI, Canada

Corresponding author: QiZhen Du, multicomponent@163.com

Received Date: 2021-11-25
Web Publishing Date: 2022-03-24

Because of the viscoelasticity of the subsurface medium, seismic waves will inherently attenuate during propagation, which lowers the resolution of the acquired seismic records. Inverse-Q filtering, as a typical approach to compensating for seismic attenuation, can efficiently recover high-resolution seismic data from attenuation. Whereas most efforts are focused on compensating for high-frequency energy and improving the stability of amplitude compensation by inverse-Q filtering, low-frequency leakage may occur as the high-frequency component is boosted. In this article, we propose a compensation scheme that promotes the preservation of low-frequency energy in the seismic data. We constructed an adaptive shaping operator based on spectral-shaping regularization by tailoring the frequency spectra of the seismic data. We then performed inverse-Q filtering in an inversion scheme. This data-driven shaping operator can regularize and balance the spectral-energy distribution for the compensated records and can maintain the low-frequency ratio by constraining the overcompensation for high-frequency energy. Synthetic tests and applications on prestack common-reflection-point gathers indicated that the proposed method can preserve the relative energy of low-frequency components while fulfilling stable high-frequency compensation.

Key words: seismic attenuation compensation, spectral-shaping regularization, data-driven shaping operator, offset-related inverse-Q filter

Bai, M., Chen, X. H., Wu, J., Chen, Y. K., Liu, G. C., and Wang, E. J. (2016). Multiple-component Gaussian beam reverse-time migration based on attenuation compensation. Chin. J. Geophys. (in Chinese), 59(9), 3379–3393. https://doi.org/10.6038/cjg20160921

Bai, T., Tsvankin, I., and Wu, X. M. (2017). Waveform inversion for attenuation estimation in anisotropic media. Geophysics, 82(4), WA83–WA93. https://doi.org/10.1190/geo2016-0596.1

Bickel, S. H., and Natarajan, R. R. (1985). Plane-wave Q deconvolution. Geophysics, 50(9), 1426–1439. https://doi.org/10.1190/1.1442011

Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. II. Higher frequency range. J. Acoust. Soc. Am., 28(2), 179–191. https://doi.org/10.1121/1.1908241

Blanch, J. O., Robertsson, J. O. A., and Symes, W. W. (1995). Modeling of a constant Q: methodology and algorithm for an efficient and optimally inexpensive viscoelastic technique. Geophysics, 60(1), 176–184. https://doi.org/10.1190/1.1443744

Braga, I. L. S., and Moraes, F. S. (2013). High-resolution gathers by inverse Q filtering in the wavelet domain. Geophysics, 78(2), V53–V61. https://doi.org/10.1190/geo2011-0508.1

Brzostowski, M. A., and McMechan, G. A. (1992). 3-D tomographic imaging of near-surface seismic velocity and attenuation. Geophysics, 57(3), 396–403. https://doi.org/10.1190/1.1443254

Carcione, J. M., Kosloff, D., and Kosloff, R. (1988). Wave propagation simulation in a linear viscoacoustic medium. Geophys. J. Int., 93(2), 393–401. https://doi.org/10.1111/j.1365-246X.1988.tb02010.x

Carcione, J. M., Cavallini, F., Mainardi, F., and Hanyga, A. (2002). Time-domain modeling of constant-Q seismic waves using fractional derivatives. Pure Appl. Geophys., 159(7), 1719–1736. https://doi.org/10.1007/s00024-002-8705-z

Chang, W. F., and McMechan, G. A. (1994). 3-D elastic prestack, reverse-time depth migration. Geophysics, 59(4), 597–609. https://doi.org/10.1190/1.1443620

Chen, S. Q., Wei, Q., Liu, L. B., and Li, X. Y. (2018). Data-driven attenuation compensation via a shaping regularization scheme. IEEE Geosci. Remote Sens. Lett., 15(11), 1667–1671. https://doi.org/10.1109/LGRS.2018.2854731

Chernov, L. A. (1960). Wave Propagation in a Random Medium (Silverman, R. A., trans.). New York: McGraw-Hill.222

Dasgupta, R., and Clark, R. A. (1998). Estimation of Q from surface seismic reflection data. Geophysics, 63(6), 2120–2128. https://doi.org/10.1190/1.1444505

Deng, F., and McMechan, G. A. (2007). True-amplitude prestack depth migration. Geophysics, 72(3), S155–S166. https://doi.org/10.1190/1.2714334

Ding, Y., Du, Q. Z., Liu, L. H., and Zhang, Q. (2019). Feature analysis and compensation of seismic low-frequency based on compressed sensing and broad-band Yu-type low-passing shaping filter. Chin. J. Geophys. (in Chinese), 62(6), 2267–2275. https://doi.org/10.6038/cjg2019M0096

Dix, C. H. (1955). Seismic velocities from surface measurements. Geophysics, 20(1), 68–86. https://doi.org/10.1190/1.1438126

Du, Q. Z., Zhu, Y. T., and Ba, J. (2012). Polarity reversal correction for elastic reverse time migration. Geophysics, 77(2), S31–S41. https://doi.org/10.1190/geo2011-0348.1

Du, Q. Z., Guo, C. F., Zhao, Q., Gong, X. F., Wang, C. X., and Li, X. Y. (2017). Vector-based elastic reverse time migration based on scalar imaging condition. Geophysics, 82(2), S111–S127. https://doi.org/10.1190/geo2016-0146.1

Dutta, G., and Schuster, G. T. (2016). Wave-equation Q tomography. Geophysics, 81(6), R471–R484. https://doi.org/10.1190/geo2016-0081.1

Fomel, S. (2007). Shaping regularization in geophysical-estimation problems. Geophysics, 72(2), R29–R36. https://doi.org/10.1190/1.2433716

Futterman, W. I. (1962). Dispersive body waves. J. Geophys. Res., 67(13), 5279–5291. https://doi.org/10.1029/JZ067i013p05279

Guo, P., McMechan, G. A., and Guan, H. M. (2016). Comparison of two viscoacoustic propagators for Q-compensated reverse time migration. Geophysics, 81(5), S281–S297. https://doi.org/10.1190/geo2015-0557.1

Hale, D. (1981). An inverse Q-filter. Stanford Exploration Project 26. 231–244. http://sep.stanford.edu/data/media/public/oldreports/oldreports/sep26/26_22.ps.gz222

Hale, D. (1982). Q-adaptive deconvolution. In Proceedings of 1982 SEG Annual Meeting (pp. 82–83). Dallas, Texas: Society of Exploration Geophysicists.222

Hargreaves, N. D., and Calvert, A. J. (1991). Inverse Q filtering by Fourier transform. Geophysics, 56(4), 519–527. https://doi.org/10.1190/1.1443067

Hestenes, M. R., and Steifel, E. (1952). Methods of conjugate gradients for solving linear systems. J. Res. Natl. Bur. Stand., 49(6), 409–436. https://doi.org/10.6028/jres.049.044

Julian, B. R., Gubbins, D. (1977). Three-dimensional seismic ray tracing. J. Geophys., 43(1), 95–113. https://journal.geophysicsjournal.com/JofG/article/view/133222

Kamei, R., and Pratt, R. G. (2008). Waveform tomography strategies for imaging attenuation structure with cross-hole data. In Proceedings of the 70th EAGE Conference and Exhibition Incorporating SPE EUROPEC 2008. Rome, Italy, EAGE. https://doi.org/10.3997/2214-4609.20147680

Kamei, R., and Pratt, R. G. (2013). Inversion strategies for visco-acoustic waveform inversion. Geophys. J. Int., 194(2), 859–884. https://doi.org/10.1093/gji/ggt109

Kjartansson, E. (1979). Constant Q-wave propagation and attenuation. J. Geophys. Res., 84(B9), 4737–4748. https://doi.org/10.1029/JB084iB09p04737

Kolsky, H. (1953). Stress Waves in Solids. Oxford: Clarendon Press.222

Kolsky, H. (1956). LXXI. The propagation of stress pulses in viscoelastic solids. Philos. Mag., 1(8), 693–710. https://doi.org/10.1080/14786435608238144

Li, G. F., Liu, Y., Zheng, H., and Huang, W. (2015). Absorption decomposition and compensation via a two-step scheme. Geophysics, 80(6), V145–V155. https://doi.org/10.1190/geo2015-0038.1

Li, Q. Z. (1993). A Systematical Analysis of High Resolution Seismic Exploration (in Chinese). Beijing: Petroleum Industry Press.222

Li, Q. Z. (2017). High-Resolution Seismic Exploration. Tulsa, Oklahoma: Society of Exploration Geophysicists.222

Liao, O. B., and McMechan, G. A. (1995). 2.5D full-wavefield viscoacoustic inversion. Geophys. Prospect., 43(8), 1043–1059. https://doi.org/10.1111/j.1365-2478.1995.tb00295.x

Liu, Y. S., Xu, T., Wang, Y. H., Teng, J. W., Badal, J., and Lan, H. Q. (2019). An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method. Earth Planet. Phys., 3(4), 342–357. https://doi.org/10.26464/epp2019035

Margrave, G. F., Lamoureux, M. P., and Henley, D. C. (2011). Gabor deconvolution: estimating reflectivity by nonstationary deconvolution of seismic data. Geophysics, 76(3), W15–W30. https://doi.org/10.1190/1.3560167

Margrave, G. F., Lamoureux, M. P., Grossman, J. P., and Iliescu, V. (2002). Gabor deconvolution of seismic data for source waveform and Q correction. In Proceedings of 2002 SEG Annual Meeting (pp. 2190–2193). Salt Lake City, Utah: Society of Exploration Geophysicists.222

Mavko, G., and Nur, A. (1975). Melt squirt in the asthenosphere. J. Geophys. Res., 80(11), 1444–1448. https://doi.org/10.1029/JB080i011p01444

Mittet, R., Sollie, R., and Hokstad, K. (1995). Prestack depth migration with compensation for absorption and dispersion. Geophysics, 60(5), 1485–1494. https://doi.org/10.1190/1.1443882

Quan, Y. L., and Harris, J. M. (1997). Seismic attenuation tomography using the frequency shift method. Geophysics, 62(3), 895–905. https://doi.org/10.1190/1.1444197

Rao, Y., and Wang, Y. H. (2019). Stabilised inverse-Q filtering for seismic characterisation of carbonate reservoirs. J. Geophys. Eng., 16(1), 190–197. https://doi.org/10.1093/jge/gxy016

Robertsson, J. O., Blanch, J. O., and Symes, W. W. (1994). Viscoelastic finite-difference modeling. Geophysics, 59(9), 1444–1456. https://doi.org/10.1190/1.1443701

Shen, Y., Biondi, B., Clapp, R., and Nichols, D. (2014). Wave-equation migration Q analysis (WEMQA). In Proceedings of 2014 SEG Annual Meeting (pp. 3757–3762). Denver, Colorado: Society of Exploration Geophysicists.222

Shen, Y., Biondi, B., and Clapp, R. (2018). Q-model building using one-way wave-equation migration Q analysis—Part 1: theory and synthetic test. Geophysics, 83(2), S93–S109. https://doi.org/10.1190/geo2016-0658.1

Shi, X. C., Mao, W. J., and Li, X. L. (2019). Viscoelastic Q-compensated Gaussian beam migration based on vector-wave imaging. Chin. J. Geophys., 64(4), 1480–1491. https://doi.org/10.6038/cjg2019L0797

Stolt, R. H. (1978). Migration by Fourier transform. Geophysics, 43(1), 23–48. https://doi.org/10.1190/1.1440826

Sun, J. Z., Zhu, T. Y., and Fomel, S. (2015). Viscoacoustic modeling and imaging using low-rank approximation. Geophysics, 80(5), A103–A108. https://doi.org/10.1190/geo2015-0083.1

Tikhonov, A. N. (1963). Solution of incorrectly formulated problems and the regularization method. Soviet Math. Dokl., 4, 1035–1038. https://ci.nii.ac.jp/naid/10006420921/222

Tonn, R. (1991). The determination of the seismic quality factor Q from VSP data: a comparison of different computational methods. Geophys. Prospect., 39(1), 1–27. https://doi.org/10.1111/j.1365-2478.1991.tb00298.x

Traynin, P., Liu, J., and Reilly, J. M. (2008). Amplitude and bandwidth recovery beneath gas zones using Kirchhoff prestack depth Q-migration. In Proceedings of 2008 SEG Annual Meeting (pp. 2412–2416). Las Vegas, Nevada: Society of Exploration Geophysicists.222

Treeby, B. E., and Cox, B. T. (2010). Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. J. Acoust. Soc. Am., 127(5), 2741–2748. https://doi.org/10.1121/1.3377056

Varela, C. L., Rosa, A. L. R., and Ulrych, T. J. (1993). Modeling of attenuation and dispersion. Geophysics, 58(8), 1167–1173. https://doi.org/10.1190/1.1443500

Wang, B. F., Chen, X. H., Li, J. Y., Chen, Z. B., and Liu, G. C. (2015). A stable and efficient attenuation compensation method based on inversion. Chin. J. Geophys., 58(4), 375–386. https://doi.org/10.1002/cjg2.20181

Wang, B. F., and Lu, W. K. (2018). An efficient amplitude-preserving generalized S transform and its application in seismic data attenuation compensation. IEEE Trans. Geosci. Remote Sens., 56(2), 859–866. https://doi.org/10.1109/TGRS.2017.2755666

Wang, S. D. (2011). Attenuation compensation method based on inversion. Appl. Geophys., 8(2), 150–157. https://doi.org/10.1007/s11770-011-0275-3

Wang, S. D., and Chen, X. H. (2014). Absorption-compensation method by l1-norm regularization. Geophysics, 79(3), V107–V114. https://doi.org/10.1190/geo2013-0206.1

Wang, Y. F., Ma, X., Zhou, H., and Chen, Y. K. (2018). L1-2 minimization for exact and stable seismic attenuation compensation. Geophys. J. Int., 213(3), 1629–1646. https://doi.org/10.1093/gji/ggy064

Wang, Y. H. (2002). A stable and efficient approach of inverse Q filtering. Geophysics, 67(2), 657–663. https://doi.org/10.1190/1.1468627

Wang, Y. H. (2003). Quantifying the effectiveness of stabilized inverse Q filtering. Geophysics, 68(1), 337–345. https://doi.org/10.1190/1.1543219

Wang, Y. H. (2004). Q analysis on reflection seismic data. Geophys. Res. Lett., 31(17), L17606. https://doi.org/10.1029/2004GL020572

Wang, Y. H., and Guo, J. (2004a). Modified Kolsky model for seismic attenuation and dispersion. J. Geophys. Eng., 1(3), 187–196. https://doi.org/10.1088/1742-2132/1/3/003

Wang, Y. H., and Guo, J. (2004b). Seismic migration with inverse Q filtering. Geophys. Res. Lett., 31(21), L21608. https://doi.org/10.1029/2004GL020525

Wang, Y. H. (2006). Inverse Q-filter for seismic resolution enhancement. Geophysics, 71(3), V51–V60. https://doi.org/10.1190/1.2192912

Wang, Y. H. (2008). Seismic Inverse Q Filtering. Singapore: Blackwell Publishing.222

Xie, Y., Xin, K. F., Sun, J., Notfors, C., Biswal, A. K., and Balasubramaniam, M. K. (2009). 3D prestack depth migration with compensation for frequency dependent absorption and dispersion. In Proceedings of 2009 SEG Annual Meeting (pp. 2919–2923). Houston, Texas: Society of Exploration Geophysicists.222

Xu, Y., and Chopra, S. (2007). Improving AVO fidelity by NMO stretching and offset-dependent tuning corrections. Lead. Edge, 26(12), 1548–1551. https://doi.org/10.1190/1.2821941

Xue, Y. J., Cao, J. X., and Wang, X. J. (2019). Inverse Q filtering via synchrosqueezed wavelet transform. Geophysics, 84(2), V121–V132. https://doi.org/10.1190/geo2018-0177.1

Yan, H. Y., and Liu, Y. (2009). Estimation of Q and inverse Q filtering for prestack reflected PP- and converted PS-waves. Appl. Geophys., 6(1), 59–69. https://doi.org/10.1007/s11770-009-0009-y

Yilmaz, Ö. (2001). Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data. Tulsa, Oklahoma: Society of Exploration Geophysicists.222

Yuan, S. Y., Wang, S. X., Ma, M., Ji, Y. Z., and Deng, L. (2017). Sparse Bayesian learning-based time-variant deconvolution. IEEE Trans. Geosci. Remote Sens., 55(11), 6182–6194. https://doi.org/10.1109/TGRS.2017.2722223

Zhang, B. L., Ni, S. D., and Chen, Y. L. (2019). Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances. Earth Planet. Phys., 3(6), 537–546. https://doi.org/10.26464/epp2019055

Zhang, C. J., and Ulrych, T. J. (2007). Seismic absorption compensation: a least squares inverse scheme. Geophysics, 72(6), R109–R114. https://doi.org/10.1190/1.2766467

Zhang, G. W., and Gao, J. H. (2018). Inversion-driven attenuation compensation using synchrosqueezing transform. IEEE Geosci. Remote Sens. Lett., 15(1), 132–136. https://doi.org/10.1109/LGRS.2017.2777598

Zhang, J. F., and Wapenaar, K. (2002). Wavefield extrapolation and prestack depth migration in anelastic inhomogeneous media. Geophys. Prospect., 50(6), 629–643. https://doi.org/10.1046/j.1365-2478.2002.00342.x

Zhang, J. F., Wu, J. Z., and Li, X. Y. (2013). Compensation for absorption and dispersion in prestack migration: an effective Q approach. Geophysics, 78(1), S1–S14. https://doi.org/10.1190/geo2012-0128.1

Zhang, Y., Zhang, P., and Zhang, H. Z. (2010). Compensating for visco-acoustic effects in reverse-time migration. In Proceedings of 2010 SEG Annual Meeting (pp. 3160–3164). Denver, Colorado: Society of Exploration Geophysicists.222

Zhu, T. Y., and Harris, J. M. (2014). Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians. Geophysics, 79(3), T105–T116. https://doi.org/10.1190/geo2013-0245.1

[1]

BaoLong Zhang, SiDao Ni, YuLin Chen, 2019: Seismic attenuation in the lower mantle beneath Northeast China constrained from short-period reflected core phases at short epicentral distances, Earth and Planetary Physics, 3, 537-546. doi: 10.26464/epp2019055

[2]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[3]

Shuai Wang, Chuang Song, ShanShan Li, Xing Li, 2022: Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data, Earth and Planetary Physics, 6, 108-122. doi: 10.26464/epp2022007

[4]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[5]

Jing Huang, XuDong Gu, BinBin Ni, Qiong Luo, Song Fu, Zheng Xiang, WenXun Zhang, 2018: Importance of electron distribution profiles to chorus wave driven evolution of Jovian radiation belt electrons, Earth and Planetary Physics, 2, 371-383. doi: 10.26464/epp2018035

[6]

Juan Huo, DaRen Lu, WenJing Xu, 2019: Application of cloud multi-spectral radiances in revealing cloud physical structures, Earth and Planetary Physics, 3, 126-135. doi: 10.26464/epp2019016

[7]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: Wavenumber-4 spectral component extracted from TIMED/SABER observations, Earth and Planetary Physics, 4, 436-448. doi: 10.26464/epp2020040

[8]

BinBin Liao, XiaoDong Chen, JianQiao Xu, JiangCun Zhou, HePing Sun, 2022: Theoretical calculation of tidal Love numbers of the Moon with a new spectral element method, Earth and Planetary Physics, 6, 241-247. doi: 10.26464/epp2022025

[9]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[10]

WeiJia Sun, Liang Zhao, Yong Wei, Li-Yun Fu, 2019: Detection of seismic events on Mars: a lunar perspective, Earth and Planetary Physics, 3, 290-297. doi: 10.26464/epp2019030

[11]

Zhi Wei, LianFeng Zhao, XiaoBi Xie, JinLai Hao, ZhenXing Yao, 2018: Seismic characteristics of the 15 February 2013 bolide explosion in Chelyabinsk, Russia, Earth and Planetary Physics, 2, 420-429. doi: 10.26464/epp2018039

[12]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[13]

YanZhe Zhao, YanBin Wang, 2019: Comparison of deterministic and stochastic approaches to crosshole seismic travel-time inversions, Earth and Planetary Physics, 3, 547-559. doi: 10.26464/epp2019056

[14]

Qing-Yu Wang, HuaJian Yao, 2020: Monitoring of velocity changes based on seismic ambient noise: A brief review and perspective, Earth and Planetary Physics, 4, 532-542. doi: 10.26464/epp2020048

[15]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[16]

Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054

[17]

XiaoWen Hu, GuoQiang Wang, ZongHao Pan, 2022: Automatic calculation of the magnetometer zero offset using the interplanetary magnetic field based on the Wang–Pan method, Earth and Planetary Physics, 6, 52-60. doi: 10.26464/epp2022017

[18]

Sha Tao, Zhengfeng Zhang, Bei Zhang, Yaolin Shi, David A Yuen, Bojing Zhu, 2022: Moonquake hazard distribution and the rolling trajectories of the lunar boulder: I. Inverse algorithm and validation of PGA, Earth and Planetary Physics. doi: 10.26464/epp2022030

[19]

QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020

[20]

Yu Zou, XiaoBo Tian, YouQiang Yu, Fa-Bin Pan, LingLing Wang, XiaoBo He, 2019: Seismic evidence for the existence of an entrained mantle flow coupling the northward advancing Indian plate under Tibet, Earth and Planetary Physics, 3, 62-68. doi: 10.26464/epp2019007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Seismic attenuation compensation with spectral-shaping regularization

QiZhen Du, WanYu Wang, WenHan Sun, Li-Yun Fu