Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, X., Xu, J. Y., and Yue, J. (2020). Global static stability and its relation to gravity waves in the middle atmosphere. Earth Planet. Phys., 4(5), 1–9doi: 10.26464/epp2020047

doi: 10.26464/epp2020047

ATMOSPHERIC PHYSICS

Global static stability and its relation to gravity waves in the middle atmosphere

1. 

Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Sciences, Henan Normal University, Xinxiang Henan 453007, China

2. 

State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China

3. 

School of Astronomyand Space Science, University of the Chinese Academy of Science, Beijing 100049, China

4. 

Catholic University of America, Washington, DC 20064, USA

5. 

National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, MD 20771, USA

Corresponding author: JiYao Xu, xujy@nssc.ac.cn

Received Date: 2020-05-11
Web Publishing Date: 2020-08-01

The global atmospheric static stability (N2) in the middle atmosphere and its relation to gravity waves (GWs) were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from 2002 to 2018. At low latitudes, a layer with enhanced N2 occurs at an altitude of ~20 km and exhibits annual oscillations caused by tropopause inversion layers. Above an altitude of ~70 km, enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause. The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of ~40°N/S. This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere. This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes.

Key words: atmospheric static stability; gravity waves; annual oscillation; semiannual oscillation; mesopause

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 489). Orlando, FL: Academic Press.222

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., … Takahashi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39(2), 179–229. https://doi.org/10.1029/1999RG000073

Birner, T., Dörnbrack, A., and Schumann, U. (2002). How sharp is the tropopause at midlatitudes?. Geophys. Res. Lett., 29(14), 45–1. https://doi.org/10.1029/2002GL015142

Birner, T., Sankey, D., and Shepherd, T. G. (2006). The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33(14), L14804. https://doi.org/10.1029/2006GL026549

Eckermann, S. D., Hirota, I., and Hocking, W. K. (1995). Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quart. J. Roy. Meteor. Soc., 121(521), 149–186. https://doi.org/10.1002/qj.49712152108

Fechine, J., Wrasse, C. M., Takahashi, H., Mlynczak, M. G., and Russell, J. M. (2008). Lower-mesospheric inversion layers over Brazilian equatorial region using TIMED/SABER temperature profiles. Adv. Space Res., 41(9), 1447–1453. https://doi.org/10.1016/j.asr.2007.04.070

Fritts, D. C., and Rastogi, P. K. (1985). Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20(6), 1247–1277. https://doi.org/10.1029/RS020i006p01247

Fritts, D. C., and Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 3–1. https://doi.org/10.1029/2001RG000106

Gan, Q., Zhang, S. D., and Yi, F. (2012). TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes. J. Geophys. Res. Atmos, 117(7), D07109. https://doi.org/10.1029/2012JD017455

Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner, T. (2011). The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49(3), RG3003. https://doi.org/10.1029/2011RG000355

Grise, K. M., Thompson, D. W. J., and Birner, T. (2010). A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23(9), 2275–2292. https://doi.org/10.1175/2009JCLI3369.1

Gubenko, V. N., Pavelyev, A. G., and Andreev, V. E. (2008). Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement. J. Geophys. Res.: Atmos., 113(D8), D08109. https://doi.org/10.1029/2007JD008920

Holton, J. R. (2004). An Introduction to Dynamic Meteorology: Fourth Edition (4th ed, pp. 535). San Diego, CA: Elsevier.222

John, S. R., and Kumar, K. K. (2012). TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate Dyn., 39(6), 1489–1505. https://doi.org/10.1007/s00382-012-1329-9

Jones, W. L. (1969). Ray tracing for internal gravity waves. J. Geophys. Res., 74(8), 2028–2033. https://doi.org/10.1029/JB074i008p02028

Krebsbach, M., and Preusse, P. (2007). Spectral analysis of gravity wave activity in SABER temperature data. Geophys. Res. Lett., 34(3), L03814. https://doi.org/10.1029/2006GL028040

Leblanc, T., and Hauchecorne, A. (1997). Recent observations of mesospheric temperature inversions. J. Geophys. Res.: Atmos., 102(D16), 19471–19482. https://doi.org/10.1029/97jd01445

Liu, H. L. (2007). On the large wind shear and fast meridional transport above the mesopause. Geophys. Res. Lett., 34(8), L08815. https://doi.org/10.1029/2006GL028789

Liu, H. L. (2017). Large wind shears and their implications for diffusion in regions with enhanced static stability: The Mesopause and the Tropopause. J. Geophys. Res.: Atmos., 122(18), 9579–9590. https://doi.org/10.1002/2017JD026748

Liu, X., Xu, J. Y., Yue, J., Liu, H. L., and Yuan, W. (2014). Large winds and wind shears caused by the nonlinear interactions between gravity waves and tidal backgrounds in the mesosphere and lower thermosphere. J. Geophys. Res.: Space Phys., 119(9), 7698–7708. https://doi.org/10.1002/2014JA020221

Liu, X., Yue, J., Xu, J. Y., Garcia, R. R., Russell III, J. M., Mlynczak, M., Wu, D. L., and Nakamura, T. (2017). Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res.: Atmos., 122(12), 6231–6249. https://doi.org/10.1002/2017JD026604

Liu, X., Xu, J. Y., Yue, J., Vadas, S. L., and Becker, E. (2019). Orographic primary and secondary gravity waves in the middle atmosphere from 16-year SABER observations. Geophys. Res. Lett., 46(8), 4512–4522. https://doi.org/10.1029/2019GL082256

Manson, A. H., and Meek, C. E. (1988). Gravity wave propagation characteristics (60-120 km) as determined by the Saskatoon MF radar (Gravnet) system: 1983-85 at 52°N, 107°W. J. Atmos. Sci., 45(6), 932–946. https://doi.org/10.1175/1520-0469(1988)045<0932:GWPCKA>2.0.CO;2

Meriwether, J. W., and Gerrard, A. J. (2004). Mesosphere inversion layers and stratosphere temperature enhancements. Rev. Geophys., 42(3), RG3003. https://doi.org/10.1029/2003RG000133

Nakamura, T., Tsuda, T., Fukao, S., Manson, A. H., Meek, C. E., Vincent, R. A., and Reid, I. M. (1996). Mesospheric gravity waves at Saskatoon (52°N), Kyoto (35°N), and Adelaide (35°S). J. Geophys. Res.: Atmos., 101(D3), 7005–7012. https://doi.org/10.1029/95JD03826

Pilch Kedzierski, R., Neef, L., and Matthes, K. (2016). Tropopause sharpening by data assimilation. Geophys. Res. Lett., 43(15), 8298–8305. https://doi.org/10.1002/2016GL069936

Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble, R. G., Riese, M., Russell, J. M., III, and Mlynczak, M. G. (2009). Global ray tracing simulations of the SABER gravity wave climatology. J. Geophys. Res.: Lett., 114(8), D08126. https://doi.org/10.1029/2008JD011214

Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, G., Russell III, J. M., Smith, A. K., … Thompson, R. E. (2008). Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res.: Atmos., 113(D17), D17101. https://doi.org/10.1029/2008JD010013

Russell, J. M., III, Mlynczak, M. G., Gordley, L. L., Tansock, Jr., J. J., and Esplin, R. W. (1999). Overview of the SABER experiment and preliminary calibration results. In Proceedings Volume 3756, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III (pp. 277-288). Denver: SPIE. https://doi.org/10.1117/12.366382222

Senft, D. C., and Gardner, C. S. (1991). Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana. J. Geophys. Res.: Atmos., 96(D9), 17229–17264. https://doi.org/10.1029/91jd01662

Shepherd, M. G., Evans, W. F. J., Hernandez, G., Offermann, D., and Takahashi, H. (2004). Global variability of mesospheric temperature: Mean temperature field. J. Geophys. Res.: Atmos., 109(D24), D24117. https://doi.org/10.1029/2004JD005054

Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J. (2017). The semiannual oscillation of the tropical zonal wind in the middle atmosphere derived from satellite geopotential height retrievals. J. Atmos. Sci., 74(8), 2413–2425. https://doi.org/10.1175/JAS-D-17-0067.1

Sunilkumar, S. V., Muhsin, M., Parameswaran, K., Venkat Ratnam, M., Ramkumar, G., Rajeev, K., Murthy, B. V. K., Namboodiri, K. V. S., Subrahmanyam, K. V., … Shankar Das, S. (2015). Characteristics of turbulence in the troposphere and lower stratosphere over the Indian Peninsula. J. Atmos. Sol.-Terr. Phys., 133, 36–53. https://doi.org/10.1016/j.jastp.2015.07.015

Sunilkumar, S. V., Muhsin, M., Venkat Ratnam, M., Parameswaran, K., Krishna Murthy, B. V., and Emmanuel, M. (2017). Boundaries of tropical tropopause layer (TTL): A new perspective based on thermal and stability profiles. J. Geophys. Res.: Atmos., 122(2), 741–754. https://doi.org/10.1002/2016JD025217

Swinbank, R., and Ortland, D. A. (2003). Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) reference atmosphere project. J. Geophys. Res.: Atmos., 108(D19), 4615. https://doi.org/10.1029/2002jd003135

Tsuda, T., Murayama, T., Nakamura, R., Vincent, R. A., Manson, A. H., Meek, C. E., and Wilson, R. L. (1994). Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. J. Atmos. Terr. Phys., 56(5), 555–568. https://doi.org/10.1016/0021-9169(94)90097-3

Wilson, R., Chanin, M. L., and Hauchecorne, A. (1991). Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2 Climatology. J. Geophys. Res.: Atmos., 96(D3), 5169–5183. https://doi.org/10.1029/90JD02610

Xu, J. Y., Liu, H. L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J., Russell II, J. M., and Mlynczak, M. G. (2007a). Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J. Geophys. Res.: Atmos., 112(D9), D09102. https://doi.org/10.1029/2006JD007711

Xu, J. Y., Smith, A. K., Yuan, W., Liu, H. L., Wu, Q., Mlynczak, M. G., and Russell III, J. M. (2007b). Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J. Geophys. Res.: Atmos., 112(D24), D24106. https://doi.org/10.1029/2007JD008546

Xu, J. Y., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G. Y., Mlynczak, M. G., Russell III, J. M., and Franke, S. J. (2009). Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res.: Atmos., 114(D13), D13107. https://doi.org/10.1029/2008jd011298

Yamashita, C., England, S. L., Immel, T. J., and Chang, L. C. (2013). Gravity wave variations during elevated stratopause events using SABER observations. J. Geophys. Res.: Atmos., 118(11), 5287–5303. https://doi.org/10.1002/jgrd.50474

Yue, J., She, C. Y., and Liu, H. L. (2010). Large wind shears and stabilities in the mesopause region observed by Na wind-temperature lidar at midlatitude. J. Geophys. Res.: Space Phys., 115(A10), A10307. https://doi.org/10.1029/2009JA014864

Zhang, Y., Xiong, J., Liu, L., and Wan, W. (2012). A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J. Geophys. Res.: Atmos., 117(D21), D21101. https://doi.org/10.1029/2012JD017676

Zhang, Y. H., Zhang, S. D., Huang, C. M., Huang, K. M., Gong, Y., and Gan, Q. (2015). The interaction between the tropopause inversion layer and the inertial gravity wave activities revealed by radiosonde observations at a midlatitude station. J. Geophys. Res.: Atmos., 120(16), 8099–8111. https://doi.org/10.1002/2015JD023115

Zhang, Y. H., Zhang, S. D., Huang, C. M., Huang, K. M., and Gong, Y. (2019). The tropopause inversion layer interaction with the inertial gravity wave activities and its latitudinal variability. J. Geophys. Res.: Atmos., 124(14), 7512–7522. https://doi.org/10.1029/2019JD030309

[1]

XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics. doi: 10.26464/epp2020039

[2]

ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics. doi: 10.26464/epp2020041

[3]

Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013

[4]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[5]

WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023

[6]

Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007

[7]

Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004

[8]

Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009

[9]

Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044

[10]

Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002

[11]

Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037

[12]

LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004

[13]

ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics. doi: 10.26464/epp2020046

[14]

Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021

[15]

HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032

[16]

Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048

[17]

Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002

[18]

Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

[19]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062

[20]

Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Global static stability and its relation to gravity waves in the middle atmosphere

Xiao Liu, JiYao Xu, Jia Yue