Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Liu, X., Xu, J. Y., and Yue, J. (2020). Global static stability and its relation to gravity waves in the middle atmosphere. Earth Planet. Phys., 4(5), 1–9doi: 10.26464/epp2020047

doi: 10.26464/epp2020047


Global static stability and its relation to gravity waves in the middle atmosphere


Henan Engineering Laboratory for Big Data Statistical Analysis and Optimal Control, School of Mathematics and Information Sciences, Henan Normal University, Xinxiang Henan 453007, China


State Key Laboratory of Space Weather, Center for Space Science and Applied Research, Chinese Academy of Sciences, Beijing 100190, China


School of Astronomyand Space Science, University of the Chinese Academy of Science, Beijing 100049, China


Catholic University of America, Washington, DC 20064, USA


National Aeronautics and Space Administration (NASA) Goddard Space Flight Center, Greenbelt, MD 20771, USA

Corresponding author: JiYao Xu,

Received Date: 2020-05-11
Web Publishing Date: 2020-08-01

The global atmospheric static stability (N2) in the middle atmosphere and its relation to gravity waves (GWs) were investigated by using the temperature profiles measured by the Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument from 2002 to 2018. At low latitudes, a layer with enhanced N2 occurs at an altitude of ~20 km and exhibits annual oscillations caused by tropopause inversion layers. Above an altitude of ~70 km, enhanced N2 exhibits semiannual oscillations at low latitudes caused by the mesosphere inversion layers and annual oscillations at high latitudes resulting from the downward shift of the summer mesopause. The correlation coefficients between N2 and GW amplitudes can be larger than 0.8 at latitudes poleward of ~40°N/S. This observation provides factual evidence that a large N2 supports large-amplitude GWs and indicates that N2 plays a dominant role in maintaining GWs at least at high latitudes of the middle atmosphere. This evidence also partially explains the previous results regarding the phase changes of annual oscillations of GWs at high latitudes.

Key words: atmospheric static stability; gravity waves; annual oscillation; semiannual oscillation; mesopause

Andrews, D. G., Holton, J. R., and Leovy, C. B. (1987). Middle Atmosphere Dynamics (pp. 489). Orlando, FL: Academic Press.222

Baldwin, M. P., Gray, L. J., Dunkerton, T. J., Hamilton, K., Haynes, P. H., Randel, W. J., Holton, J. R., Alexander, M. J., Hirota, I., … Takahashi, M. (2001). The quasi-biennial oscillation. Rev. Geophys., 39(2), 179–229.

Birner, T., Dörnbrack, A., and Schumann, U. (2002). How sharp is the tropopause at midlatitudes?. Geophys. Res. Lett., 29(14), 45–1.

Birner, T., Sankey, D., and Shepherd, T. G. (2006). The tropopause inversion layer in models and analyses. Geophys. Res. Lett., 33(14), L14804.

Eckermann, S. D., Hirota, I., and Hocking, W. K. (1995). Gravity wave and equatorial wave morphology of the stratosphere derived from long-term rocket soundings. Quart. J. Roy. Meteor. Soc., 121(521), 149–186.

Fechine, J., Wrasse, C. M., Takahashi, H., Mlynczak, M. G., and Russell, J. M. (2008). Lower-mesospheric inversion layers over Brazilian equatorial region using TIMED/SABER temperature profiles. Adv. Space Res., 41(9), 1447–1453.

Fritts, D. C., and Rastogi, P. K. (1985). Convective and dynamical instabilities due to gravity wave motions in the lower and middle atmosphere: Theory and observations. Radio Sci., 20(6), 1247–1277.

Fritts, D. C., and Alexander, M. J. (2003). Gravity wave dynamics and effects in the middle atmosphere. Rev. Geophys., 41(1), 3–1.

Gan, Q., Zhang, S. D., and Yi, F. (2012). TIMED/SABER observations of lower mesospheric inversion layers at low and middle latitudes. J. Geophys. Res. Atmos, 117(7), D07109.

Gettelman, A., Hoor, P., Pan, L. L., Randel, W. J., Hegglin, M. I., and Birner, T. (2011). The extratropical upper troposphere and lower stratosphere. Rev. Geophys., 49(3), RG3003.

Grise, K. M., Thompson, D. W. J., and Birner, T. (2010). A global survey of static stability in the stratosphere and upper troposphere. J. Climate, 23(9), 2275–2292.

Gubenko, V. N., Pavelyev, A. G., and Andreev, V. E. (2008). Determination of the intrinsic frequency and other wave parameters from a single vertical temperature or density profile measurement. J. Geophys. Res.: Atmos., 113(D8), D08109.

Holton, J. R. (2004). An Introduction to Dynamic Meteorology: Fourth Edition (4th ed, pp. 535). San Diego, CA: Elsevier.222

John, S. R., and Kumar, K. K. (2012). TIMED/SABER observations of global gravity wave climatology and their interannual variability from stratosphere to mesosphere lower thermosphere. Climate Dyn., 39(6), 1489–1505.

Jones, W. L. (1969). Ray tracing for internal gravity waves. J. Geophys. Res., 74(8), 2028–2033.

Krebsbach, M., and Preusse, P. (2007). Spectral analysis of gravity wave activity in SABER temperature data. Geophys. Res. Lett., 34(3), L03814.

Leblanc, T., and Hauchecorne, A. (1997). Recent observations of mesospheric temperature inversions. J. Geophys. Res.: Atmos., 102(D16), 19471–19482.

Liu, H. L. (2007). On the large wind shear and fast meridional transport above the mesopause. Geophys. Res. Lett., 34(8), L08815.

Liu, H. L. (2017). Large wind shears and their implications for diffusion in regions with enhanced static stability: The Mesopause and the Tropopause. J. Geophys. Res.: Atmos., 122(18), 9579–9590.

Liu, X., Xu, J. Y., Yue, J., Liu, H. L., and Yuan, W. (2014). Large winds and wind shears caused by the nonlinear interactions between gravity waves and tidal backgrounds in the mesosphere and lower thermosphere. J. Geophys. Res.: Space Phys., 119(9), 7698–7708.

Liu, X., Yue, J., Xu, J. Y., Garcia, R. R., Russell III, J. M., Mlynczak, M., Wu, D. L., and Nakamura, T. (2017). Variations of global gravity waves derived from 14 years of SABER temperature observations. J. Geophys. Res.: Atmos., 122(12), 6231–6249.

Liu, X., Xu, J. Y., Yue, J., Vadas, S. L., and Becker, E. (2019). Orographic primary and secondary gravity waves in the middle atmosphere from 16-year SABER observations. Geophys. Res. Lett., 46(8), 4512–4522.

Manson, A. H., and Meek, C. E. (1988). Gravity wave propagation characteristics (60-120 km) as determined by the Saskatoon MF radar (Gravnet) system: 1983-85 at 52°N, 107°W. J. Atmos. Sci., 45(6), 932–946.<0932:GWPCKA>2.0.CO;2

Meriwether, J. W., and Gerrard, A. J. (2004). Mesosphere inversion layers and stratosphere temperature enhancements. Rev. Geophys., 42(3), RG3003.

Nakamura, T., Tsuda, T., Fukao, S., Manson, A. H., Meek, C. E., Vincent, R. A., and Reid, I. M. (1996). Mesospheric gravity waves at Saskatoon (52°N), Kyoto (35°N), and Adelaide (35°S). J. Geophys. Res.: Atmos., 101(D3), 7005–7012.

Pilch Kedzierski, R., Neef, L., and Matthes, K. (2016). Tropopause sharpening by data assimilation. Geophys. Res. Lett., 43(15), 8298–8305.

Preusse, P., Eckermann, S. D., Ern, M., Oberheide, J., Picard, R. H., Roble, R. G., Riese, M., Russell, J. M., III, and Mlynczak, M. G. (2009). Global ray tracing simulations of the SABER gravity wave climatology. J. Geophys. Res.: Lett., 114(8), D08126.

Remsberg, E. E., Marshall, B. T., Garcia-Comas, M., Krueger, D., Lingenfelser, G. S., Martin-Torres, J., Mlynczak, G., Russell III, J. M., Smith, A. K., … Thompson, R. E. (2008). Assessment of the quality of the version 1.07 temperature-versus-pressure profiles of the middle atmosphere from TIMED/SABER. J. Geophys. Res.: Atmos., 113(D17), D17101.

Russell, J. M., III, Mlynczak, M. G., Gordley, L. L., Tansock, Jr., J. J., and Esplin, R. W. (1999). Overview of the SABER experiment and preliminary calibration results. In Proceedings Volume 3756, Optical Spectroscopic Techniques and Instrumentation for Atmospheric and Space Research III (pp. 277-288). Denver: SPIE.

Senft, D. C., and Gardner, C. S. (1991). Seasonal variability of gravity wave activity and spectra in the mesopause region at Urbana. J. Geophys. Res.: Atmos., 96(D9), 17229–17264.

Shepherd, M. G., Evans, W. F. J., Hernandez, G., Offermann, D., and Takahashi, H. (2004). Global variability of mesospheric temperature: Mean temperature field. J. Geophys. Res.: Atmos., 109(D24), D24117.

Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J. (2017). The semiannual oscillation of the tropical zonal wind in the middle atmosphere derived from satellite geopotential height retrievals. J. Atmos. Sci., 74(8), 2413–2425.

Sunilkumar, S. V., Muhsin, M., Parameswaran, K., Venkat Ratnam, M., Ramkumar, G., Rajeev, K., Murthy, B. V. K., Namboodiri, K. V. S., Subrahmanyam, K. V., … Shankar Das, S. (2015). Characteristics of turbulence in the troposphere and lower stratosphere over the Indian Peninsula. J. Atmos. Sol.-Terr. Phys., 133, 36–53.

Sunilkumar, S. V., Muhsin, M., Venkat Ratnam, M., Parameswaran, K., Krishna Murthy, B. V., and Emmanuel, M. (2017). Boundaries of tropical tropopause layer (TTL): A new perspective based on thermal and stability profiles. J. Geophys. Res.: Atmos., 122(2), 741–754.

Swinbank, R., and Ortland, D. A. (2003). Compilation of wind data for the Upper Atmosphere Research Satellite (UARS) reference atmosphere project. J. Geophys. Res.: Atmos., 108(D19), 4615.

Tsuda, T., Murayama, T., Nakamura, R., Vincent, R. A., Manson, A. H., Meek, C. E., and Wilson, R. L. (1994). Variations of the gravity wave characteristics with height, season and latitude revealed by comparative observations. J. Atmos. Terr. Phys., 56(5), 555–568.

Wilson, R., Chanin, M. L., and Hauchecorne, A. (1991). Gravity waves in the middle atmosphere observed by Rayleigh lidar: 2 Climatology. J. Geophys. Res.: Atmos., 96(D3), 5169–5183.

Xu, J. Y., Liu, H. L., Yuan, W., Smith, A. K., Roble, R. G., Mertens, C. J., Russell II, J. M., and Mlynczak, M. G. (2007a). Mesopause structure from thermosphere, ionosphere, mesosphere, energetics, and dynamics (TIMED)/sounding of the atmosphere using broadband emission radiometry (SABER) observations. J. Geophys. Res.: Atmos., 112(D9), D09102.

Xu, J. Y., Smith, A. K., Yuan, W., Liu, H. L., Wu, Q., Mlynczak, M. G., and Russell III, J. M. (2007b). Global structure and long-term variations of zonal mean temperature observed by TIMED/SABER. J. Geophys. Res.: Atmos., 112(D24), D24106.

Xu, J. Y., Smith, A. K., Liu, H. L., Yuan, W., Wu, Q., Jiang, G. Y., Mlynczak, M. G., Russell III, J. M., and Franke, S. J. (2009). Seasonal and quasi-biennial variations in the migrating diurnal tide observed by Thermosphere, Ionosphere, Mesosphere, Energetics and Dynamics (TIMED). J. Geophys. Res.: Atmos., 114(D13), D13107.

Yamashita, C., England, S. L., Immel, T. J., and Chang, L. C. (2013). Gravity wave variations during elevated stratopause events using SABER observations. J. Geophys. Res.: Atmos., 118(11), 5287–5303.

Yue, J., She, C. Y., and Liu, H. L. (2010). Large wind shears and stabilities in the mesopause region observed by Na wind-temperature lidar at midlatitude. J. Geophys. Res.: Space Phys., 115(A10), A10307.

Zhang, Y., Xiong, J., Liu, L., and Wan, W. (2012). A global morphology of gravity wave activity in the stratosphere revealed by the 8-year SABER/TIMED data. J. Geophys. Res.: Atmos., 117(D21), D21101.

Zhang, Y. H., Zhang, S. D., Huang, C. M., Huang, K. M., Gong, Y., and Gan, Q. (2015). The interaction between the tropopause inversion layer and the inertial gravity wave activities revealed by radiosonde observations at a midlatitude station. J. Geophys. Res.: Atmos., 120(16), 8099–8111.

Zhang, Y. H., Zhang, S. D., Huang, C. M., Huang, K. M., and Gong, Y. (2019). The tropopause inversion layer interaction with the inertial gravity wave activities and its latitudinal variability. J. Geophys. Res.: Atmos., 124(14), 7512–7522.


XiangHui Xue, DongSong Sun, HaiYun Xia, XianKang Dou, 2020: Inertial gravity waves observed by a Doppler wind LiDAR and their possible sources, Earth and Planetary Physics. doi: 10.26464/epp2020039


ZhiPeng Ren, WeiXing Wan, JianGang Xiong, Xing Li, 2020: Influence of annual atmospheric tide asymmetry on annual anomalies of the ionospheric mean state, Earth and Planetary Physics. doi: 10.26464/epp2020041


Wen Yi, XiangHui Xue, JinSong Chen, TingDi Chen, Na Li, 2019: Quasi-90-day oscillation observed in the MLT region at low latitudes from the Kunming meteor radar and SABER, Earth and Planetary Physics, 3, 136-146. doi: 10.26464/epp2019013


YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050


WenShuang Wang, XiaoDong Song, 2019: Analyses of anomalous amplitudes of antipodal PKIIKP waves, Earth and Planetary Physics, 3, 212-217. doi: 10.26464/epp2019023


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


Fidèle Koumetio, Donatien Njomo, Constant Tatchum Noutchogwe, Eric Ndoh Ndikum, Sévérin Nguiya, Alain-Pierre Kamga Tokam, 2019: Choice of suitable regional and residual gravity maps, the case of the South-West Cameroon zone, Earth and Planetary Physics, 3, 26-32. doi: 10.26464/epp2019004


Kokea Ariane Darolle Fofie, Fidèle Koumetio, Jean Victor Kenfack, David Yemele, 2019: Lineament characteristics using gravity data in the Garoua Zone, North Cameroon: Natural risks implications, Earth and Planetary Physics, 3, 33-44. doi: 10.26464/epp2019009


Yue Wu, Yuan Gao, 2019: Gravity pattern in southeast margin of Tibetan Plateau and its implications to tectonics and large earthquakes, Earth and Planetary Physics, 3, 425-434. doi: 10.26464/epp2019044


Qiu-Gang Zong, YongFu Wang, Jie Ren, XuZhi Zhou, SuiYan Fu, Robert Rankin, Hui Zhang, 2017: Corotating drift-bounce resonance of plasmaspheric electron with poloidal ULF waves, Earth and Planetary Physics, 1, 2-12. doi: 10.26464/epp2017002


Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037


LiCan Shan, YaSong Ge, AiMin Du, 2020: A case study of large-amplitude ULF waves in the Martian foreshock, Earth and Planetary Physics, 4, 45-50. doi: 10.26464/epp2020004


ShengYang Gu, Xin Hou, JiaHui Qi, KeMin TengChen, XianKang Dou, 2020: Reponses of middle atmospheric circulation to the 2009 major sudden stratospheric warming, Earth and Planetary Physics. doi: 10.26464/epp2020046


Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021


HuaYu Zhao, Xu-Zhi Zhou, Ying Liu, Qiu-Gang Zong, Robert Rankin, YongFu Wang, QuanQi Shi, Xiao-Chen Shen, Jie Ren, Han Liu, XingRan Chen, 2019: Poleward-moving recurrent auroral arcs associated with impulse-excited standing hydromagnetic waves, Earth and Planetary Physics, 3, 305-313. doi: 10.26464/epp2019032


Zhi Li, QuanMing Lu, RongSheng Wang, XinLiang Gao, HuaYue Chen, 2019: In situ evidence of resonant interactions between energetic electrons and whistler waves in magnetopause reconnection, Earth and Planetary Physics, 3, 467-473. doi: 10.26464/epp2019048


Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007


Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, and Jun Cui, 0: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics. doi: 10.26464/epp2020062


Konrad Sauer, Klaus Baumgärtel, Richard Sydora, 2020: Gap formation around Ωe/2 and generation of low-band whistler waves by Landau-resonant electrons in the magnetosphere: Predictions from dispersion theory, Earth and Planetary Physics, 4, 138-150. doi: 10.26464/epp2020020

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Global static stability and its relation to gravity waves in the middle atmosphere

Xiao Liu, JiYao Xu, Jia Yue