Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Wu, K., Xu, J. Y., Zhu, Y. J., and Yuan, W. (2021). Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China. Earth Planet. Phys., 5(5), 407–415. http://doi.org/10.26464/epp2021044

2021, 5(5): 407-415. doi: 10.26464/epp2021044

SPACE PHYSICS: IONOSPHERIC PHYSICS

Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China

1. 

State Key Laboratory of Space Weather, National Space Science Center, Chinese Academy of Sciences, Beijing 100190, China

2. 

School of Astronomy and Space Science, University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: JiYao Xu, jyxu@spaceweather.ac.cn

Received Date: 2021-07-03
Web Publishing Date: 2021-08-16

Branching structure (BS) is a very important phenomenon in the evolution of equatorial plasma bubbles (EPBs), the mechanism of which is widely studied from observation and from simulation. However, occurrence characteristics of branching structure of equatorial plasma bubbles (BSEPBs) have not been well addressed. In this work, we used seven-years (2012−2018) of observations from two all-sky imagers to study occurrence of BSEPBs in detail. These data reveal a high incidence of BS in EPB cases; in particular, most EPBs occurring on days with geomagnetic disturbances exhibited BS. Periods when all EPBs exhibited BS increased significantly in the 2014 solar maximum. Occurrence times of BSEPBs varied with local time; most of the BSEPBs began to appear between 21:00 and 22:00 LT. During the solar maximum, some BSEPBs were observed after midnight. The data also reveal that BSEPBs are characterized primarily by two branches or three branches. Multi-branching appeared only in the solar maximum. EPB events with different coexisting branching structures increased from 2012 to 2014 and decreased from 2014 to 2018. These results strongly suggest that BSEPB occurrence is related to solar activity and geomagnetic activity, and thus provide a new perspective for future studies of EPBs as well as enriching our understanding of ionospheric irregularity.

Key words: branching structure of equatorial plasma bubble; equatorial plasma bubble; ionospheric irregularity; all-sky imager

Aa, E., Huang, W. G., Liu, S. Q., Ridley, A., Zou, S. S., Shi, L. Q., Chen, Y. H., Shen, H., Yuan, T. J., … Wang. T. (2018). Midlatitude plasma bubbles over China and adjacent areas during a magnetic storm on 8 September 2017. Space Wea., 16(3), 321–331. https://doi.org/10.1002/2017SW001776

Abdu, M. A., Batista, I. S., Takahashi, H., MacDougall, J., Sobral, J. H., Medeiros, A. F., and Trivedi, N. B. (2003). Magnetospheric disturbance induced equatorial plasma bubble development and dynamics: a case study in Brazilian sector. J. Geophys. Res.: Space Phys., 108(A12), 1449. https://doi.org/10.1029/2002ja009721

Abdu, M. A., Batista, I. S., Reinisch, B. W., Sobral, J. H. A., and Carrasco, A. J. (2006). Equatorial F region evening vertical drift, and peak height, during southern winter months: a comparison of observational data with the IRI descriptions. Adv. Space Res., 37(5), 1007–1017. https://doi.org/10.1016/j.asr.2005.06.074

Aggson, T. L., Laakso, H., Maynard, N. C., and Pfaff, R. F. (1996). In situ observations of bifurcation of equatorial ionospheric plasma depletions. J. Geophys. Res.: Space Phys., 101(A3), 5125–5132. https://doi.org/10.1029/95ja03837

Ahn, B. H., Kamide, Y., Kroehl, H. W., and Gorney, D. J. (1992). Cross-polar cap potential difference, auroral electrojet indices, and solar wind parameters. J. Geophys. Res.: Space Phys., 97(A2), 1345–1352. https://doi.org/10.1029/91JA02432

Batista, I. S., de Medeiros, R. T., Abdu, M. A., de Souza, J. R., Bailey, G. J., and de Paula, E. R. (1996). Equatorial ionospheric vertical plasma drift model over the Brazilian region. J. Geophys. Res.: Space Phys., 101(A5), 10887–10892. https://doi.org/10.1029/95ja03833

Fejer, B. G., Farley, D. T., Woodman, R. F., and Calderon, C. (1979). Dependence of equatorial F region vertical drifts on season and solar cycle. J. Geophys. Res.: Space Phys., 84(A10), 5792–5796. https://doi.org/10.1029/JA084iA10p05792

Fejer, B. G., and Scherliess, L. (1995). Time dependent response of equatorial ionospheric electric fields to magnetospheric disturbances. Geophys. Res. Lett., 22(7), 851–854. https://doi.org/10.1029/95GL00390

Fejer, B. G., Jensen, J. W., and Su, S. Y. (2008a). Quiet time equatorial F region vertical plasma drift model derived from ROCSAT-1 observations. J. Geophys. Res.: Space Phys., 113(A5), A05304. https://doi.org/10.1029/2007JA012801

Fejer, B. G., Jensen, J. W., and Su, S. Y. (2008b). Seasonal and longitudinal dependence of equatorial disturbance vertical plasma drifts. Geophys. Res. Lett., 35(20), L20106. https://doi.org/10.1029/2008GL035584

Garcia, F. J., Taylor, M. J., and Kelley, M. C. (1997). Two-dimensional spectral analysis of mesospheric airglow image data. Appl. Opt., 36(29), 7374–7385. https://doi.org/10.1364/ao.36.007374

Huang, C. Y., Burke, W. J., Machuzak, J. S., Gentile, L. C., and Sultan, P. J. (2002). Equatorial plasma bubbles observed by DMSP satellites during a full solar cycle: toward a global climatology. J. Geophys. Res.: Space Phys., 107(A12), 1434. https://doi.org/10.1029/2002ja009452

Huba, J. D., Joyce, G., and Krall, J. (2008). Three-dimensional equatorial spread F modeling. Geophys. Res. Lett., 35(10), L10102. https://doi.org/10.1029/2008GL033509

Kelley, M. C., Fejer, B. G., and Gonzales, C. A. (1979). An explanation for anomalous equatorial ionospheric electric fields associated with a northward turning of the interplanetary magnetic field. Geophys. Res. Lett., 6(4), 301–304. https://doi.org/10.1029/GL006i004p00301

Kelley, M. C. (2009). The Earth’s Ionosphere: Plasma Physics and Electrodynamics (2nd ed). San Diego: Academic Press.222

Keskinen, M. J., Ossakow, S. L., Fejer, B. G., and Emmert, J. (2006). Evolution of equatorial ionospheric bubbles during a large auroral electrojet index increase in the recovery phase of a magnetic storm. J. Geophys. Res.: Space Phys., 111(A2), A02303. https://doi.org/10.1029/2005ja011352

Li, G. Z., Ning, B. Q., Patra, A. K., Wan, W. X., and Hu, L. H. (2011). Investigation of low-latitude E and valley region irregularities: their relationship to equatorial plasma bubble bifurcation. J. Geophys. Res.: Space Phys., 116(A11), A11319. https://doi.org/10.1029/2011JA016895

Makela, J. J., Kelley, M. C., and Nicolls, M. J. (2006). Optical observations of the development of secondary instabilities on the eastern wall of an equatorial plasma bubble. J. Geophys. Res.: Space Phys., 111(A9), A09311. https://doi.org/10.1029/2006JA011646

Makela, J. J., and Otsuka, Y. (2012). Overview of nighttime ionospheric instabilities at low-and mid-latitudes: coupling aspects resulting in structuring at the mesoscale. Space Sci. Rev., 168(1-4), 419–440. https://doi.org/10.1007/s11214-011-9816-6

Mendillo, M., and Baumgardner, J. (1982). Airglow characteristics of equatorial plasma depletions. J. Geophys. Res.: Space Phys., 87(A9), 7641–7652. https://doi.org/10.1029/JA087iA09p07641

Mendillo, M., and Tyler, A. (1983). Geometry of depleted plasma regions in the equatorial ionosphere. J. Geophys. Res.: Space Phys., 88(A7), 5778–5782. https://doi.org/10.1029/JA088iA07p05778

Ossakow, S. L. (1981). Spread-F theories—a review. J. Atmos. Terr. Phys., 43(5-6), 437–452. https://doi.org/10.1016/0021-9169(81)90107-0

Ott, E. (1978). Theory of Rayleigh-Taylor bubbles in the equatorial ionosphere. J. Geophys. Res.: Space Phys., 83(A5), 2066–2070. https://doi.org/10.1029/ja083ia05p02066

Patra, A. K., Chaitanya, P. P., Dashora, N., Sivakandan, M., and Taori, A. (2016). Highly localized unique electrodynamics and plasma irregularities linked with the 17 March 2015 severe magnetic storm observed using multitechnique common-volume observations from Gadanki, India. J. Geophys. Res.: Space Phys., 121(11), 11518–11527. https://doi.org/10.1002/2016JA023384

Richmond, D. A., Peymirat, C., and Roble, R. G. (2003). Long-lasting disturbances in the equatorial ionospheric electric field simulated with a coupled magnetosphere-ionosphere-thermosphere model. J. Geophys. Res.: Space Phys., 108(A3), 1118. https://doi.org/10.1029/2002JA009758

Sahai, Y., Becker-Guedes, F., Fagundes, P. R., de Jesus, R., de Abreu, A. J., Otsuka, Y., Shiokawa, K., Igarashi, K., Yumoto, K., … Bittencourt, J. A. (2009). Effects observed in the ionospheric F region in the east Asian sector during the intense geomagnetic disturbances in the early part of November 2004. J. Geophys. Res.: Space Phys., 114(A3), A00A18. https://doi.org/10.1029/2008JA013053

Stolle, C., Lühr, H., Rother, M., and Balasis, G. (2006). Magnetic signatures of equatorial spread F as observed by the CHAMP satellite. J. Geophys. Res.: Space Phys., 111(A2), A02304. https://doi.org/10.1029/2005JA011184

Stolle, C., Lühr, H., and Fejer, B. G. (2008). Relation between the occurrence rate of ESF and the equatorial vertical plasma drift velocity at sunset derived from global observations. Ann. Geophys., 26(12), 3979–3988. https://doi.org/10.5194/angeo-26-3979-2008

Su, S. Y., Liu, C. H., Ho, H. H., and Chao, C. K. (2006). Distribution characteristics of topside ionospheric density irregularities: equatorial versus midlatitude regions. J. Geophys. Res.: Space Phys., 111(A6), A06305. https://doi.org/10.1029/2005JA011330

Su, S. Y., Chao, C. K., Liu, C. H., and Ho, H. H. (2007). Meridional wind effect on anti-solar activity correlation of equatorial density irregularity distribution. J. Geophys. Res.: Space Phys., 112(A10), A10305. https://doi.org/10.1029/2007ja012261

Su, S. Y., Chao, C. K., and Liu, C. H. (2008). On monthly/seasonal/longitudinal variations of equatorial irregularity occurrences and their relationship with the postsunset vertical drift velocities. J. Geophys. Res.: Space Phys., 113(A5), A05307. https://doi.org/10.1029/2007JA012809

Tsunoda, R. T., Livingston, R. C., McClure, J. P., and Hanson, W. B. (1982). Equatorial plasma bubbles: vertically elongated wedges from the bottomside F layer. J. Geophys. Res.: Space Phys., 87(A11), 9171–9180. https://doi.org/10.1029/ja087ia11p09171

Tsunoda, R. T. (1985). Control of the seasonal and longitudinal occurrence of equatorial scintillations by the longitudinal gradient in integrated E region pedersen conductivity. J. Geophys. Res.: Space Phys., 90(A1), 447–456. https://doi.org/10.1029/JA090iA01p00447

Vichare, G., and Richmond, A. D. (2005). Simulation study of the longitudinal variation of evening vertical ionospheric drifts at the magnetic equator during equinox. J. Geophys. Res.: Space Phys., 110(A5), A05304. https://doi.org/10.1029/2004JA010720

Woodman, R. F., & Hoz, C. L. (1976). Radar observations of f region equatorial irregularities. J. Geophys. Res.: Space Phys., 81(31). https://doi.org/10.1029/JA081i031p05447

Wu, K., Xu, J. Y., Wang, W. B., Sun, L. C., Liu, X., and Yuan, W. (2017). Interesting equatorial plasma bubbles observed by all-sky imagers in the equatorial region of China. J. Geophys. Res.: Space Phys., 122(10), 10596–10611. https://doi.org/10.1002/2017ja024561

Wu, K., Xu, J. Y., Xiong, C., and Yuan, W. (2018). Edge plasma enhancements of equatorial plasma depletions observed by all-sky imager and the C/NOFS satellite. J. Geophys. Res.: Space Phys., 123(10), 8835–8849. https://doi.org/10.1029/2018ja025809

Wu, K., Xu, J. Y., Yue, X. N., Xiong, C., Wang, W. B., Yuan, W., Wang, C., Zhu, Y. J., and Ji, L. (2020). Equatorial plasma bubbles developing around sunrise observed by an all-sky imager and global navigation satellite system network during storm time. Ann. Geophys., 38(1), 163–177. https://doi.org/10.5194/angeo-38-163-2020

Wu, K., Xu, J. Y., Wang, W. B., Sun, L. C., and Yuan, W. (2021). Interaction of oppositely traveling medium-scale traveling ionospheric disturbances observed in low latitudes during geomagnetically quiet nighttime. J. Geophys. Res.: Space Phys., 126(2), e2020JA028723. https://doi.org/10.1029/2020JA028723

Xiong, C., Park, J., Lühr, H., Stolle, C., and Ma, S. Y. (2010). Comparing plasma bubble occurrence rates at CHAMP and GRACE altitudes during high and low solar activity. Ann. Geophys., 28(9), 1647–1658. https://doi.org/10.5194/angeo-28-1647-2010

Xiong, C., Lühr, H., and Fejer, B. G. (2015). Global features of the disturbance winds during storm time deduced from CHAMP observations. J. Geophys. Res.: Space Phys., 120(6), 5137–5150. https://doi.org/10.1002/2015JA021302

Yokoyama, T., Shinagawa, H., and Jin, H. (2014). Nonlinear growth, bifurcation, and pinching of equatorial plasma bubble simulated by three-dimensional high-resolution bubble model. J. Geophys. Res.: Space Phys., 119(12), 10474–10482. https://doi.org/10.1002/2014JA020708

Zalesak, S. T., Ossakow, S. L., and Chaturvedi, P. K. (1982). Nonlinear equatorial spread F: the effect of neutral winds and background Pedersen conductivity. J. Geophys. Res.: Space Phys., 87(A1), 151–166. https://doi.org/10.1029/JA087iA01p00151

[1]

LongChang Sun, JiYao Xu, YaJun Zhu, Wei Yuan, XiuKuan Zhao, 2021: Case study of an Equatorial Plasma Bubble Event investigated by multiple ground-based instruments at low latitudes over China, Earth and Planetary Physics, 5, 435-449. doi: 10.26464/epp2021048

[2]

Yuichi Otsuka, Luca Spogli, S. Tulasi Ram, GuoZhu Li, 2021: Preface to the Special Issue on recent advances in the study of Equatorial Plasma Bubbles and Ionospheric Scintillation, Earth and Planetary Physics, 5, 365-367. doi: 10.26464/epp2021050

[3]

H. Takahashi, P. Essien, C. A. O. B. Figueiredo, C. M. Wrasse, D. Barros, M. A. Abdu, Y. Otsuka, K. Shiokawa, GuoZhu Li, 2021: Multi-instrument study of longitudinal wave structures for plasma bubble seeding in the equatorial ionosphere, Earth and Planetary Physics, 5, 368-377. doi: 10.26464/epp2021047

[4]

Yuichi Otsuka, Atsuki Shinbori, Takuya Sori, Takuya Tsugawa, Michi Nishioka, Joseph D. Huba, 2021: Plasma depletions lasting into daytime during the recovery phase of a geomagnetic storm in May 2017: Analysis and simulation of GPS total electron content observations, Earth and Planetary Physics, 5, 427-434. doi: 10.26464/epp2021046

[5]

Yi Liu, Chen Zhou, Tong Xu, Qiong Tang, ZhongXin Deng, GuanYi Chen, ZhuangKai Wang, 2021: Review of ionospheric irregularities and ionospheric electrodynamic coupling in the middle latitude region, Earth and Planetary Physics, 5, 462-482. doi: 10.26464/epp2021025

[6]

LiBo Liu, WeiXing Wan, 2020: Recent ionospheric investigations in China (2018–2019), Earth and Planetary Physics, 4, 179-205. doi: 10.26464/epp2020028

[7]

Cristiano Max Wrasse, Cosme Alexandre Oliveira Barros Figueiredo, Diego Barros, Hisao Takahashi, Alexander José Carrasco, Luiz Fillip Rodrigues Vital, Láysa Cristina Araujo Resende, Fábio Egito, Geângelo de Matos Rosa, Antonio Hélder Rodrigues Sampaio, 2021: Interaction between Equatorial Plasma Bubbles and a Medium-Scale Traveling Ionospheric Disturbance, observed by OI 630 nm airglow imaging at Bom Jesus de Lapa, Brazil, Earth and Planetary Physics, 5, 397-406. doi: 10.26464/epp2021045

[8]

FuQing Huang, JiuHou Lei, Chao Xiong, JiaHao Zhong, GuoZhu Li, 2021: Observations of equatorial plasma bubbles during the geomagnetic storm of October 2016, Earth and Planetary Physics, 5, 416-426. doi: 10.26464/epp2021043

[9]

Nanan Balan, LiBo Liu, HuiJun Le, 2018: A brief review of equatorial ionization anomaly and ionospheric irregularities, Earth and Planetary Physics, 2, 257-275. doi: 10.26464/epp2018025

[10]

K. K. Ajith, S. Tulasi Ram, GuoZhu Li, M. Yamamoto, K. Hozumi, C. Y. Yatini, P. Supnithi, 2021: On the solar activity dependence of midnight equatorial plasma bubbles during June solstice periods, Earth and Planetary Physics, 5, 378-386. doi: 10.26464/epp2021039

[11]

Hui Li, Jian Wu, 2021: Dielectric permittivity of dusty plasma in the Earth's mesosphere, Earth and Planetary Physics, 5, 117-120. doi: 10.26464/epp2021006

[12]

Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019

[13]

P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049

[14]

GuoZhu Li, BaiQi Ning, Ao Li, SiPeng Yang, XiuKuan Zhao, BiQiang Zhao, WeiXing Wan, 2018: First results of optical meteor and meteor trail irregularity from simultaneous Sanya radar and video observations, Earth and Planetary Physics, 2, 15-21. doi: 10.26464/epp2018002

[15]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[16]

ChuXin Chen, 2021: Preservation and variation of ion-to-electron temperature ratio in the plasma sheet in geo-magnetotail, Earth and Planetary Physics, 5, 337-347. doi: 10.26464/epp2021035

[17]

LiBo Liu, WeiXing Wan, 2018: Chinese ionospheric investigations in 2016–2017, Earth and Planetary Physics, , 89-111. doi: 10.26464/epp2018011

[18]

Rui Yan, XuHui Shen, JianPing Huang, Qiao Wang, Wei Chu, DaPeng Liu, YanYan Yang, HengXin Lu, Song Xu, 2018: Examples of unusual ionospheric observations by the CSES prior to earthquakes, Earth and Planetary Physics, 2, 515-526. doi: 10.26464/epp2018050

[19]

JunYi Wang, XinAn Yue, Yong Wei, WeiXing Wan, 2018: Optimization of the Mars ionospheric radio occultation retrieval, Earth and Planetary Physics, 2, 292-302. doi: 10.26464/epp2018027

[20]

ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Occurrence characteristics of branching structures in equatorial plasma bubbles: a statistical study based on all-sky imagers in China

Kun Wu, JiYao Xu, YaJun Zhu, Wei Yuan