Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Liu, B. (2022). mFAST: A MATLAB toolbox for ocean bottom seismometer refraction first-arrival traveltime tomography. Earth Planet. Phys., 6(5), 487–494. http://doi.org/10.26464/epp2022044

2022, 6(5): 487-494. doi: 10.26464/epp2022044

SOLID EARTH: MARINE GEOPHYSICS

mFAST: A MATLAB toolbox for ocean bottom seismometer refraction first-arrival traveltime tomography

1. 

Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China

2. 

Guangzhou Marine Geological Survey, Guangzhou 511458, China

Key points:
  • We develop an open-source MATLAB toolbox for first-arrival traveltime tomography.
  • We implement the traveltime tomography as an efficient linearized inversion.
  • We validate the code by using ocean bottom seismometer (OBS) seismic survey data.

Corresponding author: Bin Liu, liugele@163.com

Received Date: 2022-04-10
Web Publishing Date: 2022-08-11

First-arrival seismic traveltime tomography (FAST) is a well-established technique to estimate subsurface velocity structures. Although several existing open-source packages are available for first-arrival traveltime tomography, most were written in compiled languages and lack sufficient extendibility for new algorithms and functionalities. In this work, we develop an open-source, self-contained FAST package based on MATLAB, one of the most popular interpreted scientific programming languages, with a focus on ocean bottom seismometer refraction traveltime tomography. Our package contains a complete traveltime tomography workflow, including ray-tracing-based first-arrival traveltime computation, linearized inversion, quality control, and high-quality visualization. We design the package as a modular toolbox, making it convenient to integrate new algorithms and functionalities as needed. At the current stage, our package is most efficient for performing FAST for two-dimensional ocean bottom seismometer surveys. We demonstrate the efficacy and accuracy of our package by using a synthetic data example based on a modified Marmousi model.

Key words: ocean bottom seismometer (OBS), first-arrival traveltime tomography, open source, MATLAB

Aki, K., and Lee, W. H. K. (1976). Determination of three-dimensional velocity anomalies under a seismic array using first P arrival times from local earthquakes: 1. A homogeneous initial model. J. Geophys. Res., 81(23), 4381–4399. https://doi.org/10.1029/JB081i023p04381

Aldridge, D. F., and Oldenburg, D. W. (1993). Two-dimensional tomographic inversion with finite-difference traveltimes. J. Seismic Explor., 2(3), 257–274.

Beaty, K. S., Perron, G., Kay, I., and Adam, E. (2002). DSISoft—A MATLAB VSP data processing package. Comput. Geosci., 28(4), 501–511. https://doi.org/10.1016/S0098-3004(01)00073-5

Guedes, V. J. C. B., Maciel, S. T. R., and Rocha, M. P. (2022). Refrapy: A Python program for seismic refraction data analysis. Comput. Geosci., 159, 105020. https://doi.org/10.1016/j.cageo.2021.105020

Guo, B., Chen, J. H., Liu, Q. Y., and Li, S. C. (2019). Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography. Earth Planet. Phys., 3(3), 232–242. https://doi.org/10.26464/epp2019025

Guo, R., Li, M. K., Yang, F., Xu, S. H., and Abubakar, A. (2019). First arrival traveltime tomography using supervised descent learning technique. Inverse Probl., 35(10), 105008. https://doi.org/10.1088/1361-6420/ab32f7

Haney, M. M., and Tsai, V. C. (2017). Perturbational and nonperturbational inversion of Rayleigh-wave velocities. Geophysics, 82(3), F15–F28. https://doi.org/10.1190/GEO2016-0397.1

Haney, M. M., and Tsai, V. C. (2020). Perturbational and nonperturbational inversion of Love-wave velocities. Geophysics, 85(1), F19–F26. https://doi.org/10.1190/geo2018-0882.1

Hobro, J. W. D., Singh, S. C., and Minshull, T. A. (2003). Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophys. J. Int., 152(1), 79–93. https://doi.org/10.1046/j.1365-246X.2003.01822.x

Hole, J. A. (1992). Nonlinear high-resolution three-dimensional seismic travel time tomography. J. Geophys. Res., 97(B5), 6553–6562. https://doi.org/10.1029/92JB00235

Korenaga, J., Holbrook, W. S., Singh, S. C., and Minshull, T. A. (1997). Natural gas hydrates on the southeast US. margin: constraints from full waveform and travel time inversions of wide-angle seismic data. J. Geophys. Res., 102(B7), 15345–15365. https://doi.org/10.1029/97JB00725

Koulakov, I., Stupina, T., and Kopp, H. (2010). Creating realistic models based on combined forward modeling and tomographic inversion of seismic profiling data. Geophysics, 75(3), B115–B136. https://doi.org/10.1190/1.3427637

Marcotte, D. (1991). Cokriging with matlab. Comput. Geosci., 17(9), 1265–1280. https://doi.org/10.1016/0098-3004(91)90028-C

Moser, T. J. (1991). Shortest path calculation of seismic rays. Geophysics, 56(1), 59–67. https://doi.org/10.1190/1.1442958

Moser, T. J., Nolet, G., and Snieder, R. (1992). Ray bending revisited. Bull. Seismol. Soc. Am., 82(1), 259–288.

Meléndez, A., Estela Jiménez, C., Sallarès, V., and Ranero, C. R. (2019). Anisotropic P-wave travel-time tomography implementing Thomsen’s weak approximation in TOMO3D. Solid Earth, 10(6), 1857–1876. https://doi.org/10.5194/se-10-1857-2019

Meléndez, A., Korenaga, J., Sallarès, V., Miniussi, A., and Ranero, C. R. (2015). TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data-synthetic test. Geophys. J. Int., 203(1), 158–174. https://doi.org/10.1093/gji/ggv292

Pasquet, S., and Bodet, L. (2017). SWIP: an integrated workflow for surface-wave dispersion inversion and profiling. Geophysics, 82(6), WB47–WB61. https://doi.org/10.1190/GEO2016-0625.1

Rücker, C., Günther, T., and Wagner, F. M. (2017). pyGIMLi: an open-source library for modelling and inversion in geophysics. Comput. Geosci., 109, 106–123. https://doi.org/10.1016/j.cageo.2017.07.011

Ryberg, T., and Haberland, C. (2018). Bayesian inversion of refraction seismic traveltime data. Geophys. J. Int., 212(3), 1645–1656. https://doi.org/10.1093/gji/ggx500

Taillandier C., Noble M., Chauris H., and Calandra H. (2009). First-arrival traveltime tomography based on the adjoint-state method. Geophysics, 74, WCB1–WCB10. https://doi.org/10.1190/1.3250266

Tian, D., Sorochian, S., and Myers, D. E. (1993). Correspondence analysis with MATLAB. Comput. Geosci., 19(7), 1007–1022. https://doi.org/10.1016/0098-3004(93)90006-Q

White, D. J. (1989). Two-dimensional seismic refraction tomography. Geophys. J. Int., 97(2), 223–245. https://doi.org/10.1111/j.1365-246X.1989.tb00498.x

Yeung, K., and Chakrabarty, C. (1993). An algorithm for transient pressure analysis in arbitrarily shaped reservoirs. Comput. Geosci., 19(3), 391–397. https://doi.org/10.1016/0098-3004(93)90093-K

Zelt, C. A., and Barton, P. J. (1998). Three-dimensional seismic refraction tomography: a comparison of two methods applied to data from the Faeroe Basin. J. Geophys. Res., 103(B4), 7187–7210. https://doi.org/10.1029/97jb03536

Zelt, C. A., and Smith, R. B. (1992). Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int., 108(1), 16–34. https://doi.org/10.1111/j.1365-246X.1992.tb00836.x

Zhang, J., and Toksöz, M. N. (1998). Nonlinear refraction traveltime tomography. Geophysics, 63(5), 1726–1737. https://doi.org/10.1190/1.1444468

Zhang, X. Y., Bai, Z. M., Xu, T., Gao, R., Li, Q. S., Hou, J., and Badal, J. (2018). Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface. Earth Planet. Phys., 2, 220–230. https://doi.org/10.26464/epp2018021

[1]

XinYan Zhang, ZhiMing Bai, Tao Xu, Rui Gao, QiuSheng Li, Jue Hou, José Badal, 2018: Joint tomographic inversion of first-arrival and reflection traveltimes for recovering 2-D seismic velocity structure with an irregular free surface, Earth and Planetary Physics, 2, 220-230. doi: 10.26464/epp2018021

[2]

XiHui Shao, HuaJian Yao, Ying Liu, HongFeng Yang, BaoFeng Tian, LiHua Fang, 2022: Shallow crustal velocity structures revealed by active source tomography and fault activities of the Mianning–Xichang segment of the Anninghe fault zone, Southwest China, Earth and Planetary Physics, 6, 204-212. doi: 10.26464/epp2022010

[3]

Xing Li, WeiXing Wan, JinBin Cao, ZhiPeng Ren, 2020: The source of tropospheric tides, Earth and Planetary Physics, 4, 449-460. doi: 10.26464/epp2020049

[4]

Md Moklesur Rahman, Ling Bai, 2018: Probabilistic seismic hazard assessment of Nepal using multiple seismic source models, Earth and Planetary Physics, 2, 327-341. doi: 10.26464/epp2018030

[5]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[6]

HaiLin Du, Xu Zhang, LiSheng Xu, WanPeng Feng, Lei Yi, Peng Li, 2018: Source complexity of the 2016 MW7.8 Kaikoura (New Zealand) earthquake revealed from teleseismic and InSAR data, Earth and Planetary Physics, 2, 310-326. doi: 10.26464/epp2018029

[7]

Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028

[8]

YouShan Liu, Tao Xu, YangHua Wang, JiWen Teng, José Badal, HaiQiang Lan, 2019: An efficient source wavefield reconstruction scheme using single boundary layer values for the spectral element method, Earth and Planetary Physics, 3, 342-357. doi: 10.26464/epp2019035

[9]

PengCheng Zhou, William L. Ellsworth, HongFeng Yang, Yen Joe Tan, Gregory C. Beroza, MinHan Sheng, RiSheng Chu, 2021: Machine-learning-facilitated earthquake and anthropogenic source detections near the Weiyuan Shale Gas Blocks, Sichuan, China, Earth and Planetary Physics, 5, 501-519. doi: 10.26464/epp2021053

[10]

Laurent Lamy, Baptiste Cecconi, Stéphane Aicardi, C. K. Louis, 2022: Comment on “Locating the source field lines of Jovian decametric radio emissions” by YuMing Wang et al., Earth and Planetary Physics, 6, 10-12. doi: 10.26464/epp2022018

[11]

LongKang Dai, Jun Cui, DanDan Niu, Hao Gu, YuTian Cao, XiaoShu Wu, HaiRong Lai, 2021: Is Solar Wind electron precipitation a source of neutral heating in the nightside Martian upper atmosphere?, Earth and Planetary Physics, 5, 1-10. doi: 10.26464/epp2021012

[12]

GuangWen Wang, HaiYan Wang, HongQiang Li, ZhanWu Lu, WenHui Li, TaiRan Xu, 2022: Application of active-source surface waves in urban underground space detection: A case study of Rongcheng County, Hebei, China, Earth and Planetary Physics, 6, 385-398. doi: 10.26464/epp2022039

[13]

Hao Luo, AiMin Du, ShaoHua Zhang, YaSong Ge, Ying Zhang, ShuQuan Sun, Lin Zhao, Lin Tian, SongYan Li, 2022: On the source of the quasi-Carrington Rotation periodic magnetic variations on the Martian surface: InSight observations and modeling, Earth and Planetary Physics, 6, 275-283. doi: 10.26464/epp2022022

[14]

YuMing Wang, RuoBing Zheng, XianZhe Jia, ChuanBing Wang, Shui Wang, V. Krupar, 2022: Reply to Comment by Lamy et al. on “Locating the source field lines of Jovian decametric radio emissions”, Earth and Planetary Physics, 6, 13-17. doi: 10.26464/epp2022019

[15]

ZhiGao Yang, XiaoDong Song, 2019: Ambient noise Love wave tomography of China, Earth and Planetary Physics, 3, 218-231. doi: 10.26464/epp2019026

[16]

Qiang Zhang, QingSong Liu, 2018: Changes in diffuse reflectance spectroscopy properties of hematite in sediments from the North Pacific Ocean and implications for eolian dust evolution history, Earth and Planetary Physics, 2, 342-350. doi: 10.26464/epp2018031

[17]

Yang Li, QuanLiang Chen, JianPing Li, WenJun Zhang, MinHong Song, Wei Hua, HongKe Cai, XiaoFei Wu, 2019: The tropical Pacific cold tongue mode and its associated main ocean dynamical process in CMIP5 models, Earth and Planetary Physics, 3, 400-413. doi: 10.26464/epp2019041

[18]

Qing Wang, XiaoDong Song, JianYe Ren, 2017: Ambient noise surface wave tomography of marginal seas in east Asia, Earth and Planetary Physics, 1, 13-25. doi: 10.26464/epp2017003

[19]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[20]

XueMin Zhang, Vladimir Frolov, ShuFan Zhao, Chen Zhou, YaLu Wang, Alexander Ryabov, DuLin Zhai, 2018: The first joint experimental results between SURA and CSES, Earth and Planetary Physics, 2, 527-537. doi: 10.26464/epp2018051

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

mFAST: A MATLAB toolbox for ocean bottom seismometer refraction first-arrival traveltime tomography

Bin Liu