Citation:
Zhu, M. H., Yu, Y. Q., Cao, X., Ni, B. B., Tian, X. B., Cao, J. B., and Jordanova, V. K. (2022). Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics. Earth Planet. Phys., 6(4), 329–338. http://doi.org/10.26464/epp2022037
2022, 6(4): 329-338. doi: 10.26464/epp2022037
Effects of polarization-reversed electromagnetic ion cyclotron waves on the ring current dynamics
1. | School of Space and Environment, Beihang University, Beijing 100191, China |
2. | Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100191, China |
3. | Department of Space Physics, School of Electronic Information, Wuhan University, Wuhan 430072, China |
4. | Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Hefei 230026, China |
5. | Space Science and Application, Los Alamos National Laboratory, Los Alamos, 87545, New Mexico, USA |
Electromagnetic ion cyclotron (EMIC) waves are widely believed to play an important role in influencing the radiation belt and ring current dynamics. Most studies have investigated the effects or characteristics of EMIC waves by assuming their left-handed polarization. However, recent studies have found that the reversal of polarization, which occurs at higher latitudes along the wave propagation path, can change the wave-induced pitch angle diffusion coefficients. Whether such a polarization reversal can influence the global ring current dynamics remains unknown. In this study, we investigate the ring current dynamics and proton precipitation loss in association with polarization-reversed EMIC waves by using the ring current–atmosphere interactions model (RAM). The results indicate that the polarization reversal of H-band EMIC waves can truly decrease the scattering rates of protons of 10 to 50 keV or >100 keV in comparison with the scenario in which the EMIC waves are considered purely left-handed polarized. Additionally, the global ring current intensity and proton precipitation may be slightly affected by the polarization reversal, especially during prestorm time and the recovery phase, but the effects are not large during the main phase. This is probably because the H-band EMIC waves contribute to the proton scattering loss primarily at E < 10 keV, an energy range that is not strongly affected by the polarization reversal.
Albert, J. M. (2003). Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma. J. Geophys. Res.:Space Phys., 108(A6), 1249. https://doi.org/10.1029/2002JA009792 |
Allen, R. C., Zhang, J. C., Kistler, L. M., Spence, H. E., Lin, R. L., Klecker, B., Dunlop, M. W., André, M., and Jordanova, V. K. (2015). A statistical study of EMIC waves observed by Cluster: 1. Wave properties. J. Geophys. Res.:Space Phys., 120(7), 5574–5592. https://doi.org/10.1002/2015JA021333 |
Allen, R. C., Zhang, J. C., Kistler, L. M., Spence, H. E., Lin, R. L., Klecker, B., Dunlop, M. W., André, M., and Jordanova, V. K. (2016). A statistical study of EMIC waves observed by Cluster: 2. Associated plasma conditions. J. Geophys. Res.:Space Phys., 121(7), 6458–6479. https://doi.org/10.1002/2016JA022541 |
Anderson, B. J., Erlandson, R. E., and Zanetti, L. J. (1992). A statistical study of Pc 1-2 magnetic pulsations in the equatorial magnetosphere: 2. Wave properties. J. Geophys. Res.:Space Phys., 97(A3), 3089–3101. https://doi.org/10.1029/91JA02697 |
Anderson, B. J., Denton, R. E., Ho, G., Hamilton, D. C., Fuselier, S. A., and Strangeway, R. J. (1996). Observational test of local proton cyclotron instability in the Earth’s magnetosphere. J. Geophys. Res.:Space Phys., 101(A10), 21527–21543. https://doi.org/10.1029/96JA01251 |
Blum, L. W., Remya, B., Denton, M. H., and Schiller, Q. (2020). Persistent EMIC wave activity across the nightside inner magnetosphere. Geophys. Res. Lett., 47(6), e2020GL087009. https://doi.org/10.1029/2020GL087009 |
Cao, X., Ni, B. B., Liang, J., Xiang, Z., Wang, Q., Shi, R., Gu, X. D., Zhou, C., Zhao, Z. Y., … Liu, J. (2016). Resonant scattering of central plasma sheet protons by multiband EMIC waves and resultant proton loss timescales. J. Geophys. Res.:Space Phys., 121(2), 1219–1232. https://doi.org/10.1002/2015JA021933 |
Cao, X., Ni, B. B., Summers, D., Shprits, Y. Y., Gu, X. D., Fu, S., Lou, Y. Q., Zhang, Y., Ma, X., … Yi, J. (2019). Sensitivity of EMIC wave-driven scattering loss of ring current protons to wave normal angle distribution. Geophys. Res. Lett., 46(2), 590–598. https://doi.org/10.1029/2018GL081550 |
Cao, X., Ni, B. B., Summers, D., Shprits, Y. Y., and Lou, Y. Q. (2020). Effects of polarization reversal on the pitch angle scattering of radiation belt electrons and ring current protons by EMIC waves. Geophys. Res. Lett., 47(17), e2020GL089718. https://doi.org/10.1029/2020GL089718 |
Capannolo, L., Li, W., Ma, Q. L., Shen, X. C., Zhang, X. J., Redmon, R. J., Rodriguez, J. V., Engebretson, M. J., Kletzing, C. A., …Raita, T. (2019). Energetic electron precipitation: Multievent analysis of its spatial extent during EMIC wave activity. J. Geophys. Res.:Space Phys., 124(4), 2466–2483. https://doi.org/10.1029/2018JA026291 |
Cornwall, J. M. (1965). Cyclotron instabilities and electromagnetic emission in the ultra low frequency and very low frequency ranges. J. Geophys. Res., 70(1), 61–69. https://doi.org/10.1029/JZ070i001p00061 |
Cornwall, J. M. (1972). Precipitation of auroral and ring current particles by artificial plasma injection. Rev. Geophys., 10(4), 993–1002. https://doi.org/10.1029/RG010i004p00993 |
Engebretson, M. J., Posch, J. L., Capman, N. S. S., Campuzano, N. G., Bělik, P., Allen, R. C., Vines, S. K., Anderson, B. J., Tian, S., … Singer, H. J. (2018a). MMS, Van Allen Probes, GOES 13, and ground-based magnetometer observations of EMIC wave events before, during, and after a modest interplanetary shock. J. Geophys. Res.:Space Phys., 123(10), 8331–8357. https://doi.org/10.1029/2018JA025984 |
Engebretson, M. J., Posch, J. L., Braun, D. J., Li, W., Ma, Q. L., Kellerman, A. C., Huang, C. L., Kanekal, S. G., Kletzing, C. A., … Ermakova, E. (2018b). EMIC wave events during the four GEM QARBM challenge intervals. J. Geophys. Res.:Space Phys., 123(8), 6394–6423. https://doi.org/10.1029/2018JA025505 |
Glauert, S. A., and Horne, R. B. (2005). Calculation of pitch angle and energy diffusion coefficients with the PADIE code. J. Geophys. Res.:Space Phys., 110(A4), A04206. https://doi.org/10.1029/2004JA010851 |
He, F. M., Cao, X., Ni, B. B., Xiang, Z., Zhou, C., Gu, X. D., Zhao, Z. Y., Shi, R., and Wang, Q. (2016). Combined scattering loss of radiation belt relativistic electrons by simultaneous three-band EMIC waves: A case study. J. Geophys. Res.:Space Phys., 121(5), 4446–4451. https://doi.org/10.1002/2016JA022483 |
Hendry, A. T., Rodger, C. J., Clilverd, M. A., Engebretson, M. J., Mann, I. R., Lessard, M. R., Raita, T., and Milling, D. K. (2016). Confirmation of EMIC wave-driven relativistic electron precipitation. J. Geophys. Res.:Space Phys., 121(6), 5366–5383. https://doi.org/10.1002/2015JA022224 |
Horne, R. B., and Thorne, R. M. (1994). Convective instabilities of electromagnetic ion cyclotron waves in the outer magnetosphere. J. Geophys. Res.:Space Phys., 99(A9), 17259–17273. https://doi.org/10.1029/94JA01259 |
Hu, Y. G., Denton, R. E., and Johnson, J. R. (2010). Two-dimensional hybrid code simulation of electromagnetic ion cyclotron waves of multi-ion plasmas in a dipole magnetic field. J. Geophys. Res.:Space Phys., 115(A9), A09218. https://doi.org/10.1029/2009JA015158 |
Jordanova, V. K., Kozyra, J. U., and Nagy, A. F. (1996). Effects of heavy ions on the quasi-linear diffusion coefficients from resonant interactions with electromagnetic ion cyclotron waves. J. Geophys. Res.:Space Phys., 101(A9), 19771–19778. https://doi.org/10.1029/96JA01641 |
Jordanova, V. K., Farrugia, C. J., Thorne, R. M., Khazanov, G. V., Reeves, G. D., and Thomsen, M. F. (2001). Modeling ring current proton precipitation by electromagnetic ion cyclotron waves during the May 14–16, 1997, storm. J. Geophys. Res.:Space Phys., 106(A1), 7–22. https://doi.org/10.1029/2000JA002008 |
Jordanova, V. K., Miyoshi, Y. S., Zaharia, S., Thomsen, M. F., Reeves, G. D., Evans, D. S., Mouikis, C. G., and Fennell, J. F. (2006). Kinetic simulations of ring current evolution during the Geospace Environment Modeling challenge events. J. Geophys. Res.:Space Phys., 111(A11), A11S10. https://doi.org/10.1029/2006JA011644 |
Jordanova, V. K., Albert, J., and Miyoshi, Y. (2008). Relativistic electron precipitation by EMIC waves from self-consistent global simulations. J. Geophys. Res.:Space Phys., 113(A3), A00A10. https://doi.org/10.1029/2008JA013239 |
Jordanova, V. K., Zaharia, S., and Welling, D. T. (2010). Comparative study of ring current development using empirical, dipolar, and self-consistent magnetic field simulations. J. Geophys. Res.:Space Phys., 115(A12), A00J11. https://doi.org/10.1029/2010JA015671 |
Jun, C. W., Yue, C., Bortnik, J., Lyons, L. R., Nishimura, Y. T., Kletzing, C. A., Wygant, J., and Spence, H. (2019). A statistical study of EMIC waves associated with and without energetic particle injection from the magnetotail. J. Geophys. Res.:Space Phys., 124(1), 433–450. https://doi.org/10.1029/2018JA025886 |
Kennel, C. F., and Petschek, H. E. (1966). Limit on stably trapped particle fluxes. J. Geophys. Res., 71(1), 1–28. https://doi.org/10.1029/JZ071i001p00001 |
Kersten, T., Horne, R. B., Glauert, S. A., Meredith, N. P., Fraser, B. J., and Grew, R. S. (2014). Electron losses from the radiation belts caused by EMIC waves. J. Geophys. Res.:Space Phys., 119(11), 8820–8837. https://doi.org/10.1002/2014JA020366 |
Kim, H., Shiokawa, K., Park, J., Miyoshi, Y., Miyashita, Y., Stolle, C., Kim, K. H., Matzka, J., Buchert, S., … Hwang, J. (2020). Ionospheric plasma density oscillation related to EMIC Pc1 waves. Geophys. Res. Lett., 47(15), e2020GL089000. https://doi.org/10.1029/2020GL089000 |
Kitamura, N., Kitahara, M., Shoji, M., Miyoshi, Y., Hasegawa, H., Nakamura, S., Katoh, Y., Saito, Y., Yokota, S., … Burch, J. L. (2018). Direct measurements of two-way wave-particle energy transfer in a collisionless space plasma. Science, 361(6406), 1000–1003. https://doi.org/10.1126/science.aap8730 |
Kozyra, J. U., Cravens, T. E., Nagy, A. F., Fontheim, E. G., and Ong, R. S. B. (1984). Effects of energetic heavy ions on electromagnetic ion cyclotron wave generation in the plasmapause region. J. Geophys. Res.:Space Phys., 89(A4), 2217–2233. https://doi.org/10.1029/JA089iA04p02217 |
Kwon, J. W., Kim, K. H., Jin, H., Kwon, H. J., Jee, G., Shiokawa, K., and Connors, M. (2020). Statistical study of EMIC Pc1-Pc2 waves observed at subauroral latitudes. J. Atmos. Sol.-Terr. Phys., 205, 105292. https://doi.org/10.1016/j.jastp.2020.105292 |
Li, L. Y., Yu, J., Cao, J. B., and Yuan, Z. G. (2016). Compression-amplified EMIC waves and their effects on relativistic electrons. Phys. Plasmas, 23(6), 062116. https://doi.org/10.1063/1.4953899 |
Lou, Y. Q., Cao, X., Ni, B. B., Wu, M. Y., and Zhang, T. L. (2021). Parametric dependence of polarization reversal effects on the particle pitch angle scattering by EMIC waves. J. Geophys. Res.:Space Phys., 126(12), e2021JA029966. https://doi.org/10.1029/2021JA029966 |
Lyons, L. R., and Thorne, R. M. (1972). Parasitic pitch angle diffusion of radiation belt particles by ion cyclotron waves. J. Geophys. Res., 77(28), 5608–5616. https://doi.org/10.1029/JA077i028p05608 |
Ma, Q. L., Li, W., Yue, C., Thorne, R. M., Bortnik, J., Kletzing, C. A., Kurth, W. S., Hospodarsky, G. B., Reeves, G. D., and Spence, H. E. (2019). Ion heating by electromagnetic ion cyclotron waves and magnetosonic waves in the Earth’s inner magnetosphere. Geophys. Res. Lett., 46(12), 6258–6267. https://doi.org/10.1029/2019GL083513 |
Ma, X., Xiang, Z., Ni, B. B., Fu, S., Cao, X., Hua, M., Guo, D. Y., Guo, Y. J., Gu, X. D., Liu, Z. Y. and Zhu, Q. (2020). On the loss mechanisms of radiation belt electron dropouts during the 12 September 2014 geomagnetic storm. Earth Planet. Phys., 4(6), 598–610. https://doi.org/10.26464/epp2020060 |
Mauk, B. H., and McPherron, R. L. (1980). An experimental test of the electromagnetic ion cyclotron instability within the Earth’s magnetosphere. Phys. Fluids, 23(10), 2111–2127. https://doi.org/10.1063/1.862873 |
Min, K., Lee, J., Keika, K., and Li, W. (2012). Global distribution of EMIC waves derived from THEMIS observations. J. Geophys. Res.:Space Phys., 117(A5), A05219. https://doi.org/10.1029/2012JA017515 |
Ni, B. B., Thorne, R. M., Shprits, Y. Y., and Bortnik, J. (2008). Resonant scattering of plasma sheet electrons by whistler-mode chorus: Contribution to diffuse auroral precipitation. Geophys. Res. Lett., 35(11), L11106. https://doi.org/10.1029/2008GL034032 |
Ni, B. B., Thorne, R. M., Meredith, N. P., Horne, R. B., and Shprits, Y. Y. (2011). Resonant scattering of plasma sheet electrons leading to diffuse auroral precipitation: 2. Evaluation for whistler mode chorus waves. J. Geophys. Res.:Space Phys., 116(A4), A04219. https://doi.org/10.1029/2010JA016233 |
Ni, B. B., Cao, X., Zou, Z. Y., Zhou C., Gu, X. D., Bortnik, J., Zhang, J. C., Fu, S., Zhao, Z. Y., … Xie, L. (2015). Resonant scattering of outer zone relativistic electrons by multiband EMIC waves and resultant electron loss time scales. J. Geophys. Res.:Space Phys., 120(9), 7357–7373. https://doi.org/10.1002/2015JA021466 |
Ni, B. B., Cao, X., Shprits, Y. Y., Summers, D., Gu, X. D., Fu, S., and Lou, Y. Q. (2018). Hot plasma effects on the cyclotron-resonant pitch-angle scattering rates of radiation belt electrons due to EMIC waves. Geophys. Res. Lett., 45(1), 21–30. https://doi.org/10.1002/2017GL076028 |
Perraut, S., Gendrin, R., Roux, A., and de Villedary, C. (1984). Ion cyclotron waves: Direct comparison between ground-based measurements and observations in the source region. J. Geophys. Res.:Space Phys., 89(A1), 195–202. https://doi.org/10.1029/JA089iA01p00195 |
Rauch, J. L., and Roux, A. (1982). Ray tracing of ULF waves in a multicomponent magnetospheric plasma: Consequences for the generation mechanism of ion cyclotron waves. J. Geophys. Res.:Space Phys., 87(A10), 8191–8198. https://doi.org/10.1029/JA087iA10p08191 |
Saikin, A. A., Zhang, J. C., Allen, R. C., Smith, C. W., Kistler, L. M., Spence, H. E., Torbert, R. B., Kletzing, C. A., and Jordanova, V. K. (2015). The occurrence and wave properties of H+-, He+-, and O+-band EMIC waves observed by the Van Allen Probes. J. Geophys. Res.:Space Phys., 120(9), 7477–7492. https://doi.org/10.1002/2015JA021358 |
Saikin, A. A. (2018). The spatial distributions, wave properties, and generation mechanisms of inner magnetosphere EMIC waves [Ph. D. thesis]. Durham: University of New Hampshire.222 |
Sheeley, B. W., Moldwin, M. B., Rassoul, H. K., and Anderson, R. R. (2001). An empirical plasmasphere and trough density model: CRRES observations. J. Geophys. Res.:Space Phys., 106(A11), 25631–25641. https://doi.org/10.1029/2000JA000286 |
Shprits, Y. Y., and Ni, B. B. (2009). Dependence of the quasi-linear scattering rates on the wave normal distribution of chorus waves. J. Geophys. Res.:Space Phys., 114(A11), A11205. https://doi.org/10.1029/2009JA014223 |
Shreedevi, P. R., Yu, Y. Q., Ni, B. B., Saikin, A., and Jordanova, V. K. (2021). Simulating the ion precipitation from the inner magnetosphere by H-band and He-band electro magnetic ion cyclotron waves. J. Geophys. Res.:Space Phys., 126(3), e2020JA028553. https://doi.org/10.1029/2020JA028553 |
Stern, D. P. (1975). The motion of a proton in the equatorial magnetosphere. J. Geophys. Res., 80(4), 595–599. https://doi.org/10.1029/JA080i004p00595 |
Su, Z. P., Zhu, H., Xiao, F. L., Zheng, H. N., Shen, C., Wang, Y. M., and Wang, S. (2013). Latitudinal dependence of nonlinear interaction between electromagnetic ion cyclotron wave and radiation belt relativistic electrons. J. Geophys. Res.:Space Phys., 118(6), 3188–3202. https://doi.org/10.1002/jgra.50289 |
Summers, D., and Thorne, R. M. (2003). Relativistic electron pitch-angle scattering by electromagnetic ion cyclotron waves during geomagnetic storms. J. Geophys. Res.:Space Phys., 108(A4), 1143. https://doi.org/10.1029/2002JA009489 |
Summers, D., Ni, B. B., and Meredith, N. P. (2007). Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory. J. Geophys. Res.:Space Phys., 112(A4), A04206. https://doi.org/10.1029/2006JA011801 |
Thorne, R. M., and Horne, R. B. (1997). Modulation of electromagnetic ion cyclotron instability due to interaction with ring current O+ during magnetic storms. J. Geophys. Res.:Space Phys., 102(A7), 14155–14163. https://doi.org/10.1029/96JA04019 |
Usanova, M. E., Drozdov, A., Orlova, K., Mann, I. R., Shprits, Y., Robertson, M. T., Turner, D. L., Milling, D. K., Kale, A., … Wygant, J. (2014). Effect of EMIC waves on relativistic and ultrarelativistic electron populations: Ground-based and Van Allen Probes observations. Geophys. Res. Lett., 41(5), 1375–1381. https://doi.org/10.1002/2013GL059024 |
Volland, H. (1973). A semiempirical model of large-scale magnetospheric electric fields. J. Geophys. Res., 78(1), 171–180. https://doi.org/10.1029/JA078i001p00171 |
Wang, Q., Cao, X., Gu, X. D., Ni, B. B., Zhou, C., Shi, R., and Zhao, Z. Y. (2016). A parametric study of the linear growth of magnetospheric EMIC waves in a hot plasma. Phys. Plasmas, 23(6), 062903. https://doi.org/10.1063/1.4953565 |
Wang, X. Y., Huang, S. Y., Allen, R. C., Fu, H. S., Deng, X. H., Zhou, M., Burch, J. L., and Torbert, R. B. (2017). The occurrence and wave properties of EMIC waves observed by the Magnetospheric Multiscale (MMS) mission. J. Geophys. Res.:Space Phys., 122(8), 8228–8240. https://doi.org/10.1002/2017JA024237 |
Xiao, F. L., Chen, L. X., He, Y. H., Su, Z. P., and Zheng, H. N. (2011). Modeling for precipitation loss of ring current protons by electromagnetic ion cyclotron waves. J. Atmos. Sol.-Terr. Phys., 73(1), 106–111. https://doi.org/10.1016/j.jastp.2010.01.007 |
Xiao, F. L., Yang, C., Zhou, Q. H., He, Z. G., He, Y. H., Zhou, X. P., and Tang, L. J. (2012). Nonstorm time scattering of ring current protons by electromagnetic ion cyclotron waves. J. Geophys. Res.:Space Phys., 117(A8), A08204. https://doi.org/10.1029/2012JA017922 |
Xue, Z. X., Yuan, Z. G., Yu, X. D., Huang, S. Y. and Qiao, Z. (2021). Formation of the mass density peak at the magnetospheric equator triggered by EMIC waves. Earth Planet. Phys., 5(1), 32–41. https://doi.org/10.26464/epp2021008 |
Young, D. T., Perraut, S., Roux, A., de Villedary, C., Gendrin, R., Korth, A., Kremser, G., and Jones, D. (1981). Wave–particle interactions near |
Yuan, Z. G., Deng, X. H., Lin, X., Pang, Y., Zhou, M., Décréau, P. M. E., Trotignon, J. G., Lucek, E., Frey, H. U., and Wang, J. F. (2010). Link between EMIC waves in a plasmaspheric plume and a detached sub-auroral proton arc with observations of Cluster and IMAGE satellites. Geophys. Res. Lett., 37(7), L07108. https://doi.org/10.1029/2010GL042711 |
Yue, C., Jun, C. W., Bortnik, J., An, X., Ma, Q. L., Reeves, G. D., Spence, H. E., Gerrard, A. J., Gkioulidou, M., .. Kletzing, C. A. (2019). The relationship between EMIC wave properties and proton distributions based on Van Allen probes observations. Geophys. Res. Lett., 46(8), 4070–4078. https://doi.org/10.1029/2019GL082633 |
Zaharia, S., Jordanova, V. K., Thomsen, M. F., and Reeves, G. D. (2006). Self-consistent modeling of magnetic fields and plasmas in the inner magnetosphere: Application to a geomagnetic storm. J. Geophys. Res.:Space Phys., 111(A11), A11S14. https://doi.org/10.1029/2006JA011619 |
Zaharia, S., Jordanova, V. K., Welling, D., and Tóth, G. (2010). Self-consistent inner magnetosphere simulation driven by a global MHD model. J. Geophys. Res.:Space Phys., 115(A12), A12228. https://doi.org/10.1029/2010JA015915 |
Zhang, J. C., Kistler, L. M., Mouikis, C. G., Dunlop, M. W., Klecker, B., and Sauvaud, J. A. (2010). A case study of EMIC wave-associated He+ energization in the outer magnetosphere: Cluster and Double Star 1 observations. J. Geophys. Res.:Space Phys., 115(A6), A06212. https://doi.org/10.1029/2009JA014784 |
Zhu, M. H., Yu, Y. Q., Tian, X. B., Shreedevi, P. R., and Jordanova, V. K. (2021a). On the ion precipitation due to field line curvature (FLC) and EMIC wave scattering and their subsequent impact on ionospheric electrodynamics. J. Geophys. Res.:Space Phys., 126(3), e2020JA028812. https://doi.org/10.1029/2020JA028812 |
Zhu, M. H., Yu, Y. Q., and Jordanova, V. K. (2021b). Simulating the effects of warm O+ ions on the growth of electromagnetic ion cyclotron (EMIC) waves. J. Atmos. Sol.-Terr. Phys., 224, 105737. https://doi.org/10.1016/j.jastp.2021.105737 |
[1] |
Zheng Huang, ZhiGang Yuan, XiongDong Yu, 2020: Evolutions of equatorial ring current ions during a magnetic storm, Earth and Planetary Physics, 4, 131-137. doi: 10.26464/epp2020019 |
[2] |
EunJin Jang, Chao Yue, QiuGang Zong, SuiYan Fu, HaoBo Fu, 2021: The effect of non-storm time substorms on the ring current dynamics, Earth and Planetary Physics, 5, 251-258. doi: 10.26464/epp2021032 |
[3] |
Jiang Yu, Jing Wang, Jun Cui, 2019: Ring current proton scattering by low-frequency magnetosonic waves, Earth and Planetary Physics, 3, 365-372. doi: 10.26464/epp2019037 |
[4] |
Chao Wei, Lei Dai, SuPing Duan, Chi Wang, YuXian Wang, 2019: Multiple satellites observation evidence: High-m Poloidal ULF waves with time-varying polarization states, Earth and Planetary Physics, 3, 190-203. doi: 10.26464/epp2019021 |
[5] |
ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059 |
[6] |
Di Liu, ZhongHua Yao, Yong Wei, ZhaoJin Rong, LiCan Shan, Stiepen Arnaud, Espley Jared, HanYing Wei, WeiXing Wan, 2020: Upstream proton cyclotron waves: occurrence and amplitude dependence on IMF cone angle at Mars — from MAVEN observations, Earth and Planetary Physics, 4, 51-61. doi: 10.26464/epp2020002 |
[7] |
P. Abadi, Y. Otsuka, HuiXin Liu, K. Hozumi, D. R. Martinigrum, P. Jamjareegulgarn, Le Truong Thanh, R. Otadoy, 2021: Roles of thermospheric neutral wind and equatorial electrojet in pre-reversal enhancement, deduced from observations in Southeast Asia, Earth and Planetary Physics, 5, 387-396. doi: 10.26464/epp2021049 |
[8] |
Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020 |
[9] |
HongTao Huang, YiQun Yu, JinBin Cao, Lei Dai, RongSheng Wang, 2021: On the ion distributions at the separatrices during symmetric magnetic reconnection, Earth and Planetary Physics, 5, 205-217. doi: 10.26464/epp2021019 |
[10] |
Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043 |
[11] |
JianPing Huang, XuHui Shen, XueMin Zhang, HengXin Lu, Qiao Tan, Qiao Wang, Rui Yan, Wei Chu, YanYan Yang, DaPeng Liu, Song Xu, 2018: Application system and data description of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 444-454. doi: 10.26464/epp2018042 |
[12] |
XuHui Shen, Qiu-Gang Zong, XueMin Zhang, 2018: Introduction to special section on the China Seismo-Electromagnetic Satellite and initial results, Earth and Planetary Physics, 2, 439-443. doi: 10.26464/epp2018041 |
[13] |
Hao Zhang, YaBing Wang, JianYong Lu, 2022: Statistical study of “trunk-like” heavy ion structures in the inner magnetosphere, Earth and Planetary Physics, 6, 339-349. doi: 10.26464/epp2022032 |
[14] |
Liang Chen, Ming Ou, YaPing Yuan, Fang Sun, Xiao Yu, WeiMin Zhen, 2018: Preliminary observation results of the Coherent Beacon System onboard the China Seismo-Electromagnetic Satellite-1, Earth and Planetary Physics, 2, 505-514. doi: 10.26464/epp2018049 |
[15] |
Qiao Wang, JianPing Huang, XueMin Zhang, XuHui Shen, ShiGeng Yuan, Li Zeng, JinBin Cao, 2018: China Seismo-Electromagnetic Satellite search coil magnetometer data and initial results, Earth and Planetary Physics, 2, 462-468. doi: 10.26464/epp2018044 |
[16] |
Wei Chu, JianPing Huang, XuHui Shen, Ping Wang, XinQiao Li, ZhengHua An, YanBing Xu, XiaoHua Liang, 2018: Preliminary results of the High Energetic Particle Package on-board the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 489-498. doi: 10.26464/epp2018047 |
[17] |
FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022 |
[18] |
Xiang Wang, Chen Zhou, Tong Xu, Farideh Honary, Michael Rietveld, Vladimir Frolov, 2019: Stimulated electromagnetic emissions spectrum observed during an X-mode heating experiment at the European Incoherent Scatter Scientific Association, Earth and Planetary Physics, 3, 391-399. doi: 10.26464/epp2019042 |
[19] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
[20] |
LingGao Kong, AiBing Zhang, Zhen Tian, XiangZhi Zheng, WenJing Wang, Bin Liu, Peter Wurz, Daniele Piazza, Adrian Etter, Bin Su, YaYa An, JianJing Ding, WenYa Li, Yong Liu, Lei Li, YiRen Li, Xu Tan, YueQiang Sun, 2020: Mars Ion and Neutral Particle Analyzer (MINPA) for Chinese Mars Exploration Mission (Tianwen-1): Design and ground calibration, Earth and Planetary Physics, 4, 333-344. doi: 10.26464/epp2020053 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)