Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Jin, Y. and Pang, Y. (2020). The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation. Earth Planet. Phys., 4(3), 223–230doi: 10.26464/epp2020013

2020, 4(3): 223-230. doi: 10.26464/epp2020013

PLANETARY SCIENCES

The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation

1. 

Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China

2. 

School of Information Engineering, Nanchang University, Nanchang 330031, China

Corresponding author: Ye Pang, jbbheiji@hotmail.com

Received Date: 2019-06-18
Web Publishing Date: 2020-05-01

One-dimensional hybrid simulations are carried out to study the plasma refilling process in the lunar wake. Previous theoretical and simulation studies have shown that ion-ion acoustic (ⅡA) instability can be initiated and electrostatic shock can be formed under the condition ${{T_{\rm e}}\gg {T_{\rm i}}}$. We find that the time evolution of ⅡA instability and the formation of electrostatic shock strongly depend on initial cavity density. The initial position of the electrostatic shock is dependent on the ratio between initial cavity density and background solar wind density, i.e., the farther away the initial position, the lower is the ratio. When the initial cavity density is low enough, the density and electric field profile across the wake become much complex. Meanwhile, the back-to-back electrostatic shock is unstable in the case of lower cavity densities; at the late evolution stage, a new shock-like structure can be formed at the central region of the lunar wake.

Key words: plasma refilling; ion-ion acoustic instability; Moon wake; electrostatic shock

Birch, P. C., and Chapman, S. C. (2001). Particle-in-cell simulations of the lunar wake with high phase space resolution. Geophys. Res. Lett., 28(2), 219–222. https://doi.org/10.1029/2000GL011958

Dusenbery, P. B., and Lyons, L. R. (1985). The generation of electrostatic noise in the plasma sheet boundary layer. J. Geophys. Res., 90(A11), 10935–10943. https://doi.org/10.1029/JA090iA11p10935

Farrell, W. M., Kaiser, M. L., Steinberg, J. T., and Bale, S. D. (1998). A simple simulation of a plasma void: applications to Wind observations of the lunar wake. J. Geophys. Res., 103(A10), 23653–23660. https://doi.org/10.1029/97JA03717. https://doi.org/10.1029/97JA03717

Gary, S. P., and Omidi, N. (1987). The ion-ion acoustic instability. J. Plasma Phys., 37(1), 45–67. https://doi.org/10.1017/S0022377800011983

Grabbe, C. L., and Eastman, T. E. (1984). Generation of broadband electrostatic noise by ion beam instabilities in the magnetotail. J. Geophys. Res., 89(A6), 3865–3872. https://doi.org/10.1029/JA089iA06p03865

Israelevich, P., and Ofman, L. (2012). Hybrid simulation of the shock wave trailing the Moon. J. Geophys. Res., 117(A8), A08223. https://doi.org/10.1029/2011JA017358

Karimabadi, H., Omidi, N., and Quest, K. B. (1991). Two-dimensional simulations of the ion/ion acoustic instability and electrostatic shocks. Geophys. Res. Lett., 18(10), 1813–1816. https://doi.org/10.1029/91GL02241

Li, H. M., Pang, Y., Huang, S. Y., Zhou, M., Deng, X. H., Yuan, Z. G., Wang, D. D., and Li, H. M. (2013). The turbulence evolution in the high β region of the Earth's foreshock. J. Geophys. Res., 118(11), 7151–7159. https://doi.org/10.1002/2013JA019424

Michel, F. C. (1967). Shock wave trailing the moon. J. Geophys. Res., 72(9), 5508–5509. https://doi.org/10.1029/JZ072i021p05508

Michel, F. C. (1968). Magnetic field structure behind the moon. J. Geophys. Res., 73(5), 1533–1542. https://doi.org/10.1029/JA073i005p01533

Schriver, D., and Ashour-Abdalla, M. (1990). Cold plasma heating in the plasma sheet boundary layer: theory and simulations. J. Geophys. Res., 95(A4), 3987–4005. https://doi.org/10.1029/JA095iA04p03987

Wang, X. Y., and Lin, Y. (2003). Generation of nonlinear Alfvén and magnetosonic waves by beam-plasma interaction. Phys. Plasmas, 10(9), 3528–3538. https://doi.org/10.1063/1.1599359

Zhou, M., Pang, Y., Deng, X. H., Huang, S. Y., and Lai, X. S. (2014). Plasma physics of magnetic island coalescence during magnetic reconnection. J. Geophys. Res., 119(8), 6177–6189. https://doi.org/10.1002/2013JA019483

Zhou, M., El-Alaoui, M., Lapenta, G., Berchem, J., Richard, R. L., Schriver, D., and Walker, R. J. (2018). Suprathermal electron acceleration in a reconnecting magnetotail: large-scale kinetic simulation. J. Geophys. Res., 123(10), 8087–8108. https://doi.org/10.1029/2018JA025502

[1]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[2]

FangBo Yu, SuiYan Fu, WeiJie Sun, XuZhi Zhou, Lun Xie, Han Liu, Duo Zhao, ShaoJie Zhao, Li Li, JingWen Zhang, Tong Wu, Ying Xiong, 2019: Heating of multi-species upflowing ion beams observed by Cluster on March 28, 2001, Earth and Planetary Physics, 3, 204-211. doi: 10.26464/epp2019022

[3]

ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049

[4]

XiongDong Yu, ZhiGang Yuan, ShiYong Huang, Fei Yao, Zheng Qiao, John R. Wygant, Herbert O. Funsten, 2019: Excitation of extremely low-frequency chorus emissions: The role of background plasma density, Earth and Planetary Physics, 3, 1-7. doi: 10.26464/epp2019001

[5]

Elizabeth A. Silber, 2018: Deployment of a short-term geophysical field survey to monitor acoustic signals associated with the Windsor Hum, Earth and Planetary Physics, 2, 351-358. doi: 10.26464/epp2018032

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation

Yuan Jin, Ye Pang