Citation:
Jing Huang, Meng Zhou, HuiMin Li, XiaoHua Deng, Jiang Liu, ShiYong Huang,
2019: Small-scale dipolarization fronts in the Earth′s magnetotail, Earth and Planetary Physics, 3, 358-364.
doi: 10.26464/epp2019036
2019, 3(4): 358-364. doi: 10.26464/epp2019036
Small-scale dipolarization fronts in the Earth′s magnetotail
1. | Institute of Space Science and Technology, Nanchang University, Nanchang 330031, China |
2. | School of Physics and Optoelectronic Engineering, Xidian University, Xi’an 710071, China |
3. | Department of Earth, Planetary, and Space Sciences and Institute of Geophysics and Planetary Physics, University of California, Los Angeles, California, USA |
4. | School of Electronic and Information, Wuhan University, Wuhan 430072, China |
Previous studies suggest that dipolarization fronts (DFs) are 1 to 3RE (RE is the earth radius) wide in the dawn-dusk direction. Recent kinetic simulations have found that DFs may break up into small-scale structures after they are produced by reconnection. Motivated by this simulation, we revisited the scale size of DFs in the dawn-dusk direction by using Cluster observations during the years when the inter-distance among Cluster spacecraft was between 1000 and 2000 km. We selected the DFs that were detected by more than one spacecraft and estimated the radii of these DFs by a simple geometrical analysis, which is based on comparison of DF normals observed by different spacecraft. We found a few DFs that were only a few ion inertial lengths in the dawn-dusk direction. These results point out the importance of multi-scale coupling during the evolution of DFs.
Angelopoulos, V., Runov, A., Zhou, X. Z., Turner, D. L., Kiehas, S. A., Li, S. S., and Shinohara, I. (2013). Electromagnetic energy conversion at reconnection fronts. Science, 341(6153), 1478–1482. https://doi.org/10.1126/science.1236992 |
Ashour-Abdalla, M., El-Alaoui, M., Goldstein, M. L., Zhou, M., Schriver, D., Richard, R., Walker, R., Kivelson, M. G., and Hwang, K. J. (2011). Observations and simulations of non-local acceleration of electrons in magnetotail magnetic reconnection events. Nat. Phys., 7(4), 360–365. https://doi.org/10.1038/nphys1903 |
Balogh, A., Carr, C. M., Acuña, M. H., Dunlop, M. W., Beek, T. J., Brown, P., Fornacon, K. H., Georgescu, E., Glassmeier, K. H., … Schwingenschuh, K. (2001). The cluster magnetic field investigation: overview of in-flight performance and initial results. Ann. Geophys., 19(10-12), 1207–1217. https://doi.org/10.5194/angeo-19-1207-2001 |
Birn, J., Hesse, M., Nakamura, R., and Zaharia, S. (2013). Particle acceleration in dipolarization events. J. Geophys. Res.: Space Phys., 118(5), 1960–1971. https://doi.org/10.1002/jgra.50132 |
Deng, X. H., Ashour-Abdalla, M., Zhou, M., Walker, R., El-Alaoui, M., Angelopoulos, V., Ergun, R. E., and Schriver, D. (2010). Wave and particle characteristics of earthward electron injections associated with dipolarization fronts. J. Geophys. Res.: Space Phys., 115(A9), A09225. https://doi.org/10.1029/2009JA015107 |
Escoubet, C. P., Schmidt, R., and Goldstein, M. L. (1997). Cluster-science and mission overview. Space Sci. Rev., 79(1-2), 11–32. https://doi.org/10.1023/A:1004923124586 |
Fu, H. S., Khotyaintsev, Y. V., André, M., and Vaivads, A. (2011). Fermi and betatron acceleration of suprathermal electrons behind dipolarization fronts. Geophys. Res. Lett., 38(16), L16104. https://doi.org/10.1029/2011GL048528 |
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., and Huang, S. Y. (2012a). Occurrence rate of earthward-propagating dipolarization fronts. Geophys. Res. Lett., 39(10), L10101. https://doi.org/10.1029/2012GL051784 |
Fu, H. S., Khotyaintsev, Y. V., Vaivads, A., André, M., Sergeev, V. A., Huang, S. Y., Kronberg, E. A., and Daly, P. W. (2012b). Pitch angle distribution of suprathermal electrons behind dipolarization fronts: A statistical overview. J. Geophys. Res.: Space Phys., 117(A12), A12221. https://doi.org/10.1029/2012JA018141 |
Gustafsson, G., André, M., Carozzi, T., Eriksson, A. I., Fälthammar, C.-G., Grard, R., Holmgren, G., Holtet, J. A., Ivchenko, N., … Wahlund, J. E. (2001). First results of electric field and density observations by CLUSTER EFW based on initial months of operation. Ann. Geophys., 19(10-12), 1219–1240. https://doi.org/10.5194/angeo-19-1219-2001 |
Huang, S. Y., Zhou, M., Deng, X. H., Yuan, Z. G., Pang, Y., Wei, Q., Su, W., Li, H. M., and Wang, Q. Q. (2012). Kinetic structure and wave properties associated with sharp dipolarization front observed by Cluster. Ann. Geophys., 30(1), 97–107. https://doi.org/10.5194/angeo-30-97-2012 |
Huang, S. Y., Fu, H. S., Yuan, Z. G., Zhou, M., Fu, S., Deng, X. H., Sun, W. J., Pang, Y., Wang, D. D., .. Yu, X. D. (2015a). Electromagnetic energy conversion at dipolarization fronts: Multispacecraft results. J. Geophys. Res.: Space Phys., 120(6), 4496–4502. https://doi.org/10.1002/2015JA021083 |
Huang, S. Y., Fu, H. S., Vaivads, A., Yuan, Z. G., Pang, Y., Zhou, M., Khotyaintsev, Y. V., Deng, X. H., André, M., … Wang, D. D. (2015b). Dawn-dusk scale of dipolarization front in the Earth’s magnetotail: multi-cases study. Astrophys. Space Sci., 357(1), 22. https://doi.org/10.1007/s10509-015-2298-3 |
Liu, J., Angelopoulos, V., Zhou, X. Z., Runov, A., and Yao, Z. H. (2013). On the role of pressure and flow perturbations around dipolarizing flux bundles. J. Geophys. Res.: Space Phys., 118(11), 7104–7118. https://doi.org/10.1002/2013JA019256 |
Liu, J., Angelopoulos, V., Zhou, X. Z., and Runov, A. (2014). Magnetic flux transport by dipolarizing flux bundles. J. Geophys. Res.: Space Phys., 119(2), 909–926. https://doi.org/10.1002/2013JA019395 |
Liu, J., Angelopoulos, V., Zhou, X. Z., Yao, Z. H., and Runov, A. (2015). Cross-tail expansion of dipolarizing flux bundles. J. Geophys. Res.: Space Phys., 120(4), 2516–2530. https://doi.org/10.1002/2015JA020997 |
Li, H. M., Zhou, M., Deng, X. H., Yuan, Z. G., Guo, L. X., Yu, X. D., Pang, Y., and Huang, S. Y. (2015). A statistical study on the whistler waves behind dipolarization fronts. J. Geophys. Res.: Space Phys., 120(2), 1086–1095. https://doi.org/10.1002/2014JA020474 |
Nakamura, R., Baumjohann, W., Klecker, B., Bogdanova, Y., Balogh, A., Rème, H., Bosqued, J. M., Dandouras, I., Sauvaud, J. A., .. Runov, A. (2002). Motion of the dipolarization front during a flow burst event observed by Cluster. Geophys. Res. Lett., 29(20), 3-1–3-4. https://doi.org/10.1029/2002GL015763 |
Nakamura, R., Baumjohann, W., Mouikis, C., Kistler, L. M., Runov, A., Volwerk, M., Asano, Y., Vörös, Z., Zhang, T. L., … Balogh, A. (2004). Spatial scale of high-speed flows in the plasma sheet observed by Cluster. Geophys. Res. Lett., 31(9), L09804. https://doi.org/10.1029/2004GL019558 |
Ohtani, S., Shay, M. A., and Mukai, T. (2004). Temporal structure of the fast convective flow in the plasma sheet: Comparison between observations and two-fluid simulations. J. Geophys. Res.: Space Phys., 109(A3), A03210. https://doi.org/10.1029/2003JA010002 |
Pan, D. X., Khotyaintsev, Y. V., Graham, D. B., Vaivads, A., Zhou, X. Z., André, M., Zhou, X. Z., André, M., Lindqvist, P. A., .. Burch, J. L. (2018). Rippled electron-scale structure of a dipolarization front. Geophys. Res. Lett., 45(22), 12116–12124. https://doi.org/10.1029/2018GL080826 |
Pedersen, A., Lybekk, B., André, M., Eriksson, A., Masson, A., Mozer, F. S., Lindqvist, P.-A., DéCréAu, P. M. E., Dandouras, I., … Whipple, E. (2008). Electron density estimations derived from spacecraft potential measurements on Cluster in tenuous plasma regions. J. Geophys. Res.: Space Phys., 113(A7), A07S33. https://doi.org/10.1029/2007JA012636 |
Pritchett, P. L., Coroniti, F. V., and Nishimura, Y. (2014). The kinetic ballooning/interchange instability as a source of dipolarization fronts and auroral streamers. J. Geophys. Res.: Space Phys., 119(6), 4723–4739. https://doi.org/10.1002/2014JA019890 |
Pritchett, P. L. (2016). Three-dimensional structure and kinetic features of reconnection exhaust jets. J. Geophys. Res.: Space Phys., 121(1), 214–226. https://doi.org/10.1002/2015JA022053 |
Rème, H., Aoustin, C., Bosqued, J. M., Dandouras, I., Lavraud, B., Sauvaud, J. A., Barthe, A., Bouyssou, J., Camus, T., … Sonnerup, B. (2001). First multispacecraft ion measurements in and near the Earth’s magnetosphere with the identical Cluster ion spectrometry (CIS) experiment. Ann. Geophys., 19(10-12), 1303–1354. https://doi.org/10.5194/angeo-19-1303-2001 |
Runov, A., Angelopoulos, V., Sitnov, M. I., Sergeev, V. A., Bonnell, J., McFadden, J. P., Larson, D., Glassmeier, K. H., and Auster, U. (2009). THEMIS observations of an earthward-propagating dipolarization front. Geophys. Res. Lett., 36(14), L14106. https://doi.org/10.1029/2009GL038980 |
Runov, A., Angelopoulos, V., Zhou, X. Z., Zhang, X. J., Li, S., Plaschke, F., and Bonnell, J. (2011). A THEMIS multicase study of dipolarization fronts in the magnetotail plasma sheet. J. Geophys. Res.: Space Phys., 116(A5), A05216. https://doi.org/10.1029/2010JA016316 |
Schmid, D., Volwerk, M., Nakamura, R., Baumjohann, W., and Heyn, M. (2011). A statistical and event study of magnetotail dipolarization fronts. Ann. Geophys., 29(9), 1537–1547. https://doi.org/10.5194/angeo-29-1537-2011 |
Sergeev, V. A., Angelopoulos, V., Gosling, J. T., Cattell, C. A., and Russell, C. T. (1996). Detection of localized, plasma-depleted flux tubes or bubbles in the midtail plasma sheet. J. Geophys. Res. Space Phys., 101(A5), 10817–10826. https://doi.org/10.1029/96JA00460 |
Sonnerup, B. U. Ö., and Scheible, M. (1998). Minimum and maximum variance analysis. In G. Paschmann, et al. (Eds.), Analysis Methods for Multi-Spacecraft Data (pp. 185-22). Bern, Switzerland: International Space Science Institute.222 |
Vapirev, A. E., Lapenta, G., Divin, A., Markidis, S., Henri, P., Goldman, M., and Newman, D. (2013). Formation of a transient front structure near reconnection point in 3-D PIC simulations. J. Geophys. Res.: Space Phys., 118(4), 1435–1449. https://doi.org/10.1002/jgra.50136 |
Wang, Y., Zhou, M., and Deng, X. H. (2015). Statistical study on the suprathermal electrons properties around dipolarization fronts in Earth’s magnetotail. Sci. China Technol. Sci., 58(6), 961–966. https://doi.org/10.1007/s11431-015-5830-3 |
Zhou, M., Ashour-Abdalla, M., Deng, X. H., Schriver, D., El-Alaoui, M., and Pang, Y. (2009). THEMIS observation of multiple dipolarization fronts and associated wave characteristics in the near-Earth magnetotail. Geophys. Res. Lett., 36(20), L20107. https://doi.org/10.1029/2009GL040663 |
Zhou, M., Deng, X. H., Ashour-Abdalla, M., Walker, R., Pang, Y., Tang, C. L., Huang, S. Y., El-Alaoui, M., Yuan, Z. G., and Li, H. M. (2013). Cluster observations of kinetic structures and electron acceleration within a dynamic plasma bubble. J. Geophys. Res.: Space Phys., 118(2), 674–684. https://doi.org/10.1029/2012JA018323 |
Zhou, M., Ni, B. B., Huang, S. Y., Deng, X. H., Ashour-Abdalla, M., Nishimura, Y., Yuan, Z. G., Pang, Y., and Li, H. M. (2014). Observation of large-amplitude magnetosonic waves at dipolarization fronts. J. Geophys. Res.: Space Phys., 119(6), 4335–4347. https://doi.org/10.1002/2014JA019796 |
Zhou, M., Ashour-Abdalla, M., Deng, X. H., Pang, Y., Fu, H. S., Walker, R., Lapenta, G., Huang, S. Y., Xu, X. J., and Tang, R. X. (2017). Observation of three-dimensional magnetic reconnection in the terrestrial magnetotail. J. Geophys. Res.: Space Phys., 122(9), 9513–9520. https://doi.org/10.1002/2017JA024597 |
[1] |
ChuXin Chen, Chih-Ping Wang, 2019: Contribution of patchy reconnection to the ion-to-electron temperature ratio in the Earth's magnetotail, Earth and Planetary Physics, 3, 474-480. doi: 10.26464/epp2019049 |
[2] |
Yong Wei, XinAn Yue, ZhaoJin Rong, YongXin Pan, WeiXing Wan, RiXiang Zhu, 2017: A planetary perspective on Earth’s space environment evolution, Earth and Planetary Physics, 1, 63-67. doi: 10.26464/epp2017009 |
[3] |
ZhongHua Yao, 2017: Observations of loading-unloading process at Saturn’s distant magnetotail, Earth and Planetary Physics, 1, 53-57. doi: 10.26464/epp2017007 |
[4] |
JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024 |
[5] |
WeiXing Wan, 2017: Earth science, planetary vision——A foreword to Earth and Planetary Physics (EPP), Earth and Planetary Physics, 1, 1-1. doi: 10.26464/epp2017001 |
[6] |
YuLan Li, BaoShan Wang, RiZheng He, HongWei Zheng, JiangYong Yan, Yao Li, 2018: Fine relocation, mechanism, and tectonic indications of middle-small earthquakes in the Central Tibetan Plateau, Earth and Planetary Physics, 2, 406-419. doi: 10.26464/epp2018038 |
[7] |
ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008 |
[8] |
WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033 |
Article Metrics
- PDF Downloads()
- Abstract views()
- HTML views()
- Cited by(0)