Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Li, S. B., Lu, H. Y., Cui, J., Yu, Y. Q., Mazelle, C., Li, Y., and Cao, J. B. (2020). Effects of a dipole-like crustal field on solar wind interaction with Mars. Earth Planet. Phys., 4(1), 23–31.doi: 10.26464/epp2020005

2020, 4(1): 23-31. doi: 10.26464/epp2020005

PLANETARY SCIENCES

Effects of a dipole-like crustal field on solar wind interaction with Mars

1. 

School of Space and Environment, Beihang University, Beijing 100191, China

2. 

Key Laboratory of Space Environment Monitoring and Information Processing, Ministry of Industry and Information Technology, Beijing 100191, China

3. 

School of Atmospheric Sciences, Sun Yat-Sen University, Zhuhai Guangdong 519082, China

4. 

CNRS, Institute de Recherche en Astrophysique et Planétologie, Toulouse, France

Corresponding author: HaoYu Lu, lvhy@buaa.edu.cn

Received Date: 2019-10-27
Web Publishing Date: 2020-01-01

A three-dimensional four species multi-fluid magnetohydrodynamic (MHD) model was constructed to simulate the solar wind global interaction with Mars. The model was augmented to consider production and loss of the significant ion species in the Martian ionosphere, i.e., H+, O2+, O+, CO2+, associated with chemical reactions among all species. An ideal dipole-like local crustal field model was used to simplify the empirically measured Martian crustal field. Results of this simulation suggest that the magnetic pile-up region (MPR) and the velocity profile in the meridian plane are asymmetric, which is due to the nature of the multi-fluid model to decouple individual ion velocity resulting in occurrence of plume flow in the northern Martian magnetotail. In the presence of dipole magnetic field model, boundary layers, such as bow shock (BS) and magnetic pile-up boundary (MPB), become protuberant. Moreover, the crustal field has an inhibiting effect on the flux of ions escaping from Mars, an effect that occurs primarily in the region between the terminator (SZA 90°) and the Sun–Mars line of the magnetotail (SZA 180°), partially around the terminator region. In contrast, near the tailward central line the crustal field has no significant impact on the escaping flux.

Key words: solar wind interaction with Mars; global MHD simulation; crustal field; escape flux

Acuña, M. H., Connerney, J. E. P., Ness, N. F., Lin, R. P., Mitchell, D., Carlson, C. W., McFadden, J., Anderson, K. A., Reme, H., … Cloutier, P. (1999). Global distribution of crustal magnetization discovered by the mars global surveyor MAG/ER experiment. Science, 284(5415), 790–793. https://doi.org/10.1126/science.284.5415.790

Bertucci, C., Mazelle, C., Crider, D. H., Vignes, D., Acuña, M. H., Mitchell, D. L., Lin, R. P., Connerney, J. E. P., Rème, H., … Winterhalter, D. (2003a). Magnetic field draping enhancement at the Martian magnetic pileup boundary from Mars Global Surveyor observations. Geophys. Res. Lett., 30(2), 1099. https://doi.org/10.1029/2002GL015713

Bertucci, C., Mazelle, C., Slavin, J. A., Russell, C. T., and Acuña, M. H. (2003b). Magnetic field draping enhancement at Venus: evidence for a magnetic pileup boundary. Geophys. Res. Lett., 30(17), 1876. https://doi.org/10.1029/2003GL017271

Bougher, S. W., Engel, S., Roble, R. G., and Foster, B. (2000). Comparative terrestrial planet thermospheres: 3. Solar cycle variation of global structure and winds at solstices. J. Geophys. Res., 105(E7), 17669–17692. https://doi.org/10.1029/1999JE001232

Brecht, S. H., and Ledvina, S. A. (2012). Control of ion loss from Mars during solar minimum. Earth Planets Space, 64(2), 12. https://doi.org/10.5047/eps.2011.05.037

Brecht, S. H., and Ledvina, S. A. (2014). The role of the Martian crustal magnetic fields in controlling ionospheric loss. Geophys. Res. Lett., 41(15), 5340–5346. https://doi.org/10.1002/2014GL060841

Cain, J. C., Ferguson, B. B., and Mozzoni, D. (2003). An n = 90 internal potential function of the Martian crustal magnetic field. J. Geophys. Res., 108(E2), 5008. https://doi.org/10.1029/2000JE001487

Chassefière, E., and Leblanc, F. (2004). Mars atmospheric escape and evolution; interaction with the solar wind. Planet. Space Sci., 52(11), 1039–1058. https://doi.org/10.1016/j.pss.2004.07.002

Cravens, T. E., Hamil, O., Houston, S., Bougher, S., Ma, Y., Brain, D., and Ledvina, S. (2017). Estimates of ionospheric transport and ion loss at Mars. J. Geophys. Res., 122(10), 10626–10637. https://doi.org/10.1002/2017JA024582

Crider, D. H., Acuña, M. H., Connerney, J. E. P., Vignes, D., Ness, N. F., Krymskii, A. M., Breus, T. K., Rème, H., Mazelle, C., … Winterhalter, D. (2002). Observations of the latitude dependence of the location of the Martian magnetic pileup boundary. Geophys. Res. Lett., 29(8), 1170. https://doi.org/10.1029/2001GL013860

DiBraccio, G. A., Luhmann, J. G., Curry, S. M., Espley, J. R., Xu, S. S., Mitchell, D. L., Ma, Y. J., Dong, C. F., Gruesbeck, J. R., … Jakosky, B. M. (2018). The twisted configuration of the Martian magnetotail: MAVEN observations. Geophys. Res. Lett., 45(10), 4559–4568. https://doi.org/10.1029/2018GL077251

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Nagy, A. F., and Najib, D. (2014). Solar wind interaction with Mars upper atmosphere: results from the one-way coupling between the multifluid MHD model and the MTGCM model. Geophys. Res. Lett., 41(8), 2708–2715. https://doi.org/10.1002/2014GL059515

Dong, C. F., Bougher, S. W., Ma, Y. J., Toth, G., Lee, Y., Nagy, A. F., Tenishev, V., Pawlowski, D. J., Combi, M. R., and Najib, D. (2015). Solar wind interaction with the Martian upper atmosphere: crustal field orientation, solar cycle, and seasonal variations. J. Geophys. Res., 120(9), 7857–7872. https://doi.org/10.1002/2015JA020990

Dong, C. F., Lee, Y., Ma, Y. J., Lingam, M., Bougher, S., Luhmann, J., Curry, S., Toth, G., Nagy, A., … Jakosky, B. (2018). Modeling Martian atmospheric losses over time: implications for exoplanetary climate evolution and habitability. Astrophys. J. Lett., 859(1), L14. https://doi.org/10.3847/2041-8213/aac489

Dong, H. T., Zhang, L. D., and Lee, C. H. (2002). High order discontinuity decomposition entropy condition schemes for Euler equations. Comput. Fluid Dyn. J., 10(4), 563–568.

Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E., Curry, S. M., Harada, Y., Luhmann, J. G., and Jakosky, B. M. (2015). Strong plume fluxes at Mars observed by MAVEN: an important planetary ion escape channel. Geophys. Res. Lett., 42(21), 8942–8950. https://doi.org/10.1002/2015GL065346

Dong, Y., Fang, X., Brain, D. A., McFadden, J. P., Halekas, J. S., Connerney, J. E. P., Eparvier, F., Andersson, L., Mitchell, D., and Jakosky, B. M. (2017). Seasonal variability of Martian ion escape through the plume and tail from MAVEN observations. J. Geophys. Res., 122(4), 4009–4022. https://doi.org/10.1002/2016JA023517

Dubinin, E., Modolo, R., Fraenz, M., Woch, J., Duru, F., Akalin, F., Gurnett, D., Lundin, R., Barabash, S., … Picardi, G. (2008). Structure and dynamics of the solar wind/ionosphere interface on Mars: MEX-ASPERA-3 and MEX-MARSIS observations. Geophys. Res. Lett., 35(11), L11103. https://doi.org/10.1029/2008GL033730

Dubinin, E., Fraenz, M., Pätzold, M., Andrews, D., Vaisberg, O., Zelenyi, L., and Barabash, S. (2017). Martian ionosphere observed by Mars Express. 2. Influence of solar irradiance on upper ionosphere and escape fluxes. Planet. Space Sci., 145. https://doi.org/10.1016/j.pss.2017.07.002

Edberg, N. J. T., Lester, M., Cowley, S. W. H., and Eriksson, A. I. (2008). Statistical analysis of the location of the Martian magnetic pileup boundary and bow shock and the influence of crustal magnetic fields. J. Geophys. Res., 113(A8), A08206. https://doi.org/10.1029/2008JA013096

Fang, X. H., Liemohn, M. W., Nagy, A. F., Ma, Y. J., de Zeeuw, D. L., Kozyra, J. U., and Zurbuchen, T. H. (2008). Pickup oxygen ion velocity space and spatial distribution around Mars. J. Geophys. Res., 113(A2), A02210. https://doi.org/10.1029/2007JA012736

Fang, X. H., Liemohn, M. W., Nagy, A. F., Luhmann, J. G., and Ma, Y. J. (2010). On the effect of the Martian crustal magnetic field on atmospheric erosion. Icarus, 206(1), 130–138. https://doi.org/10.1016/j.icarus.2009.01.012

Fang, X. H., Ma, Y. J., Brain, D., Dong, Y. X., and Lillis, R. (2015). Control of Mars global atmospheric loss by the continuous rotation of the crustal magnetic field: A time-dependent MHD study. J. Geophys. Res., 120(12), 10926–10944. https://doi.org/10.1002/2015JA021605

Fang, X. H., Ma, Y. J., Masunaga, K., Dong, Y. X., Brain, D., Halekas, J., Lillis, R., Jakosky, B., Connerney, J., … Dong C. F. (2017). The Mars crustal magnetic field control of plasma boundary locations and atmospheric loss: MHD prediction and comparison with MAVEN. J. Geophys. Res., 122(4), 4117–4137. https://doi.org/10.1002/2016JA023509

Fang, X. H., Ma, Y. J., Luhmann, J., Dong, Y. X., Brain, D., Hurley, D., Dong, C. F., Lee, C. O., and Jakosky, B. (2018). The morphology of the solar wind magnetic field draping on the dayside of Mars and its variability. Geophys. Res. Lett., 45(8), 3356–3365. https://doi.org/10.1002/2018GL077230

Fox, J. L., and Hác, A. B. (2014). The escape of O from Mars: sensitivity to the elastic cross sections. Icarus, 228, 375–385. https://doi.org/10.1016/j.icarus.2013.10.014

Fränz, M., Dubinin, E., Andrews, D., Barabash, S., Nilsson, H., and Fedorov, A. (2015). Cold ion escape from the Martian ionosphere. Planet. Space Sci., 119, 92–102. https://doi.org/10.1016/j.pss.2015.07.012

Gruesbeck, J. R., Espley, J. R., Connerney, J. E. P., DiBraccio, G. A., Soobiah Y. I., Brain, D., Mazelle, C., Dann, J., Halekas, J., and Mitchell, D. L. (2018). The three-dimensional bow shock of Mars as observed by MAVEN. J. Geophys. Res., 123(6), 4542–4555. https://doi.org/10.1029/2018JA025366

Hall, B. E. S., Lester, M., Sánchez-Cano, B., Nichols, J. D., Andrews, D. J., Edberg, N. J. T., Opgenoorth, H. J., Fränz, M., Holmström, M., … Orosei, R. (2016). Annual variations in the Martian bow shock location as observed by the Mars Express mission. J. Geophys. Res., 121(11), 11474–11494. https://doi.org/10.1002/2016JA023316

Hall, B. E. S., Sánchez-Cano, B., Wild, J. A., Lester, M., and Holmstrom, M. (2019). The Martian bow shock over solar cycle 23–24 as observed by the Mars Express mission. J. Geophys. Res., 124(6), 4761–4772. https://doi.org/10.1029/2018JA026404

Harnett, E. M., and Winglee, R. M. (2006). Three-dimensional multifluid simulations of ionospheric loss at Mars from nominal solar wind conditions to magnetic cloud events. J. Geophys. Res, 111(A9), A09213. https://doi.org/10.1029/2006JA011724

Harnett, E. M., and Winglee, R. M. (2007). High-resolution multifluid simulations of the plasma environment near the Martian magnetic anomalies. J. Geophys. Res, 112(A5), A05207. https://doi.org/10.1029/2006JA012001

Holmberg, M. K. G., André, N., Garnier, P., Modolo, R., Andersson, L., Halekas, J., Mazelle, C., Steckiewicz, M., Génot, V., … Mitchell, D. L. (2019). MAVEN and MEX multi‐instrument study of the dayside of the Martian induced magnetospheric structure revealed by pressure analyses. J. Geophys. Res. https://doi.org/10.1029/2019JA026954

Johnson, R. E., and Leblanc, F. (2001). The physics and chemistry of sputtering by energetic plasma ions. In: N. Meyer-Vernet, et al. (Eds.), Physics of Space: Growth Points and Problems. Dordrecht: Springer. https://doi.org/10.1007/978-94-010-0904-1_32222

Kallio, E., Fedorov, A., Budnik, E., Säles, T., Janhunen, P., Schmidt, W., Koskinen, H., Riihelä, P., Barabash, S., … Dierker, C. (2006). Ion escape at Mars: comparison of a 3-D hybrid simulation with Mars Express IMA/ASPERA-3 measurements. Icarus, 182(2), 350–359. https://doi.org/10.1016/j.icarus.2005.09.018

Lasue, J., Mangold, N., Hauber, E., Clifford, S., Feldman, W., Gasnault, O., Grima, C., Maurice, S., and Mousis, O. (2013). Quantitative assessments of the Martian hydrosphere. Space Sci. Rev., 174(1-4), 155–212. https://doi.org/10.1007/s11214-012-9946-5

Ledvina, S. A., Ma, Y. J., and Kallio, E. (2008). Modeling and simulating flowing plasmas and related phenomena. Space Sci. Rev., 139(1-4), 143–189. https://doi.org/10.1007/s11214-008-9384-6

Liemohn, M. W., Ma, Y., Nagy, A. F., Kozyra, J. U., Winningham, J. D., Frahm, R. A., Sharber, J. R., Barabash, S., and Lundin, R. (2007). Numerical modeling of the magnetic topology near Mars auroral observations. Geophys. Res. Lett., 34(24), L24202. https://doi.org/10.1029/2007GL031806

Lillis, R. J., Brain, D. A., Bougher, S. W., Leblanc, F., Luhmann, J. G., Jakosky, B. M., Modolo, R., Fox, J., Deighan, J., … Lin, R. P. (2015). Characterizing atmospheric escape from mars today and through time, with MAVEN. Space Sci. Rev., 195(1-4), 357–422. https://doi.org/10.1007/s11214-015-0165-8

Lillis, R. J., Mitchell, D. L., Steckiewicz, M., Brain, D., Xu, S. S., Weber, T., Halekas, J., Connerney, J., Espley, J., … Eparvier, F. (2018). Ionizing electrons on the Martian nightside: structure and variability. J. Geophys. Res., 123(5), 4349–4363. https://doi.org/10.1029/2017JA025151

Ma, Y. J., Nagy, A. F., Sokolov, I. V., and Hansen, K. C. (2004). Three-dimensional, multispecies, high spatial resolution MHD studies of the solar wind interaction with Mars. J. Geophys. Res., 109(A7), A07211. https://doi.org/10.1029/2003JA010367

Ma, Y. J., Altwegg, K., Breus, T., Combi, M. R., Cravens, T. E., Kallio, E., Ledvina, S. A., Luhmann, J. G., Miller, S., … Strobel, D. F. (2008). Plasma flow and related phenomena in planetary Aeronomy. Space Sci. Rev., 139(1-4), 311–353. https://doi.org/10.1007/s11214-008-9389-1

Ma, Y. J., Fang, X. H., Russell, C. T., Nagy, A. F., Toth, G., Luhmann, J. G., Brain, D. A., and Dong, C. F. (2014a). Effects of crustal field rotation on the solar wind plasma interaction with Mars. Geophys. Res. Lett., 41(19), 6563–6569. https://doi.org/10.1002/2014GL060785

Ma, Y. J., Fang, X., Nagy, A. F., Russell, C. T., and Toth, G. (2014b). Martian ionospheric responses to dynamic pressure enhancements in the solar wind. J. Geophys. Res., 119(2), 1272–1286. https://doi.org/10.1002/2013JA019402

Ma, Y. J., Russell, C. T., Fang, X., Dong, Y., Nagy, A. F., Toth, G., Halekas, J. S., Connerney, J. E. P., Espley, J. R., … Jakosky, B. M. (2015). MHD model results of solar wind interaction with Mars and comparison with MAVEN plasma observations. Geophys. Res. Lett., 42(21), 9113–9120. https://doi.org/10.1002/2015GL065218

Ma, Y. J., Russell, C. T., Toth, G., Chen, Y. X., Nagy, A. F., Harada, Y., McFadden, J., Halekas, J. S., Lillis, R., … Jakosky, B. M. (2018). Reconnection in the Martian magnetotail: hall-MHD with embedded particle-in-cell simulations. J. Geophys. Res., 123(5), 3742–3763. https://doi.org/10.1029/2017JA024729

Mazelle, C., Winterhalter, D., Sauer, K., Trotignon, J. G., Acuña, M. H., Baumgärtel, K., Bertucci, C., Brain, D. A., Brecht, S. H., … Slavin, J. (2004). Bow shock and upstream phenomena at mars. Space Sci. Rev., 111(1-2), 115–181. https://doi.org/10.1023/B:SPAC.0000032717.98679.d0

Morschhauser, A., Lesur, V., and Grott, M. (2014). A spherical harmonic model of the lithospheric magnetic field of Mars. J. Geophys. Res., 119(6), 1162–1188. https://doi.org/10.1002/2013JE004555

Nagy, A. F., Winterhalter, D., Sauer, K., Cravens, T. E., Brecht, S., Mazelle, C., Crider, D., Kallio, E., Zakharov, A., … Trotignon, J. G. (2004). The plasma environment of mars. Space Sci. Rev., 111(1-2), 33–114. https://doi.org/10.1023/B:SPAC.0000032718.47512.92

Najib, D., Nagy, A. F., Tóth, G., and Ma, Y. J. (2011). Three-dimensional, multifluid, high spatial resolution MHD model studies of the solar wind interaction with Mars. J. Geophys. Res., 116(A5), A05204. https://doi.org/10.1029/2010JA016272

Nilsson, H., Edberg, N. J. T., Stenberg, G., Barabash, S., Holmström, M., Futaana, Y., Lundin, R., and Fedorov, A. (2011). Heavy ion escape from Mars, influence from solar wind conditions and crustal magnetic fields. Icarus, 215(2), 475–484. https://doi.org/10.1016/j.icarus.2011.08.003

Purucker, M., Ravat, D., Frey, H., Voorhies, C., Sabaka, T., and Acuña, M. (2000). An altitude-normalized magnetic map of Mars and its interpretation. Geophys. Res. Lett., 27(16), 2449–2452. https://doi.org/10.1029/2000GL000072

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., Dunn, P. A., Mitchell, D. L., Thiemann, E. M. B., … Jakosky, B. M. (2017). MAVEN measured oxygen and hydrogen pickup ions: probing the Martian exosphere and neutral escape. J. Geophys. Res., 122(3), 3689–3706. https://doi.org/10.1002/2016JA023371

Rahmati, A., Larson, D. E., Cravens, T. E., Lillis, R. J., Halekas, J. S., McFadden, J. P., Mitchell, D. L., Thiemann, E. M. B., Connerney, J. E. P., … Jakosky, B. M. (2018). Seasonal variability of neutral escape from Mars as derived from MAVEN pickup ion observations. J. Geophys. Res., 123(5), 1192–1202. https://doi.org/10.1029/2018JE005560

Ramstad, R., Barabash, S., Futaana, Y., Nilsson, H., and Holmström, M. (2016). Effects of the crustal magnetic fields on the Martian atmospheric ion escape rate. Geophys. Res. Lett., 43(20), 10574–10579. https://doi.org/10.1002/2016GL070135

Regoli, L. H., Dong, C., Ma, Y., Dubinin, E., Manchester, W. B., Bougher, S. W., and Welling, D. T. (2018). Multispecies and multifluid MHD approaches for the study of ionospheric escape at Mars. J. Geophys. Res., 123(9), 7370–7383. https://doi.org/10.1029/2017JA025117

Schunk, R., and Nagy, A. (2009). Ionospheres (2nd ed.). New York: Cambridge University Press.222

Simon, S., Boesswetter, A., Bagdonat, T., and Motschmann, U. (2007). Physics of the ion composition boundary: a comparative 3-D hybrid simulation study of Mars and Titan. Ann. Geophys, 25(1), 99–115. https://doi.org/10.5194/angeo-25-99-2007

Terada, N., Kulikov, Y. N., Lammer, H., Lichtenegger, H. I. M., Tanaka, T., Shinagawa, H., and Zhang, T. L. (2009). Atmosphere and water loss from early Mars under extreme solar wind and extreme ultraviolet conditions. Astrobiology, 9(1), 55–70. https://doi.org/10.1089/ast.2008.0250

Vignes, D., Mazelle, C., Rme, H., Acuña, M. H., Connerney, J. E. P., Lin, R. P., Mitchell, D. L., Cloutier, P., Crider, D. H., and Ness, N. F. (2000). The solar wind interaction with Mars: locations and shapes of the bow shock and the magnetic pile-up boundary from the observations of the MAG/ER Experiment onboard Mars Global Surveyor. Geophys. Res. Lett., 27(1), 49–52. https://doi.org/10.1029/1999GL010703

Vignes, D., Acuña, M. H., Connerney, J. E. P., Crider, D. H., Rème, H., and Mazelle, C. (2002). Factors controlling the location of the Bow Shock at Mars. Geophys. Res. Lett., 29(9), 1328. https://doi.org/10.1029/2001GL014513

Withers, P. (2009). A review of observed variability in the dayside ionosphere of Mars. Adv. Space Res., 44(3), 277–307. https://doi.org/10.1016/j.asr.2009.04.027

Xu, S. S., Liemohn, M. W., Dong, C. F., Mitchell, D. L., Bougher, S. W., and Ma, Y. J. (2016). Pressure and ion composition boundaries at Mars. J. Geophys. Res., 121(7), 6417–6429. https://doi.org/10.1002/2016JA022644

[1]

JianYong Lu, HanXiao Zhang, Ming Wang, ChunLi Gu, HaiYan Guan, 2019: Magnetosphere response to the IMF turning from north to south, Earth and Planetary Physics, 3, 8-16. doi: 10.26464/epp2019002

[2]

YuXian Wang, XiaoCheng Guo, BinBin Tang, WenYa Li, Chi Wang, 2018: Modeling the Jovian magnetosphere under an antiparallel interplanetary magnetic field from a global MHD simulation, Earth and Planetary Physics, 2, 303-309. doi: 10.26464/epp2018028

[3]

Fa-Yu Jiang, Jun Cui, Ji-Yao Xu, Yong Wei, 2019: Species-dependent ion escape on Titan, Earth and Planetary Physics, 3, 183-189. doi: 10.26464/epp2019020

[4]

YuTian Cao, Jun Cui, XiaoShu Wu, JiaHao Zhong, 2020: Photoelectron pitch angle distribution near Mars and implications on cross terminator magnetic field connectivity, Earth and Planetary Physics, 4, 17-22. doi: 10.26464/epp2020008

[5]

TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004

[6]

Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025

[7]

Yang Li, QuanLiang Chen, XiaoRan Liu, Nan Xing, ZhiGang Cheng, HongKe Cai, Xin Zhou, Dong Chen, XiaoFei Wu, MingGang Li, 2019: The first two leading modes of the tropical Pacific and their linkage without global warming, Earth and Planetary Physics, 3, 157-165. doi: 10.26464/epp2019019

[8]

HongLin Jin, Yuan Gao, XiaoNing Su, GuangYu Fu, 2019: Contemporary crustal tectonic movement in the southern Sichuan-Yunnan block based on dense GPS observation data, Earth and Planetary Physics, 3, 53-61. doi: 10.26464/epp2019006

[9]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[10]

Yuan Jin, Ye Pang, 2020: The effect of cavity density on the formation of electrostatic shock in the lunar wake: 1-D hybrid simulation, Earth and Planetary Physics. doi: 10.26464/epp2020013

[11]

Bin Zhou, YanYan Yang, YiTeng Zhang, XiaoChen Gou, BingJun Cheng, JinDong Wang, Lei Li, 2018: Magnetic field data processing methods of the China Seismo-Electromagnetic Satellite, Earth and Planetary Physics, 2, 455-461. doi: 10.26464/epp2018043

[12]

JianHui Tian, Yan Luo, Li Zhao, 2019: Regional stress field in Yunnan revealed by the focal mechanisms of moderate and small earthquakes, Earth and Planetary Physics, 3, 243-252. doi: 10.26464/epp2019024

[13]

Qi Zhang, YongHong Zhao, Hang Wang, Muhammad Irfan Ehsan, JiaYing Yang, Gang Tian, AnDong Xu, Ru Liu, YanJun Xiao, 2020: Evolution of the deformation field and earthquake fracture precursors of strike-slip faults, Earth and Planetary Physics, 4, 151-162. doi: 10.26464/epp2020021

[14]

YuMing Wang, XianZhe Jia, ChuanBing Wang, Shui Wang, Vratislav Krupar, 2020: Locating the source field lines of Jovian decametric radio emissions, Earth and Planetary Physics, 4, 95-104. doi: 10.26464/epp2020015

[15]

Hui Tian, ZhongQuan Qu, YaJie Chen, LinHua Deng, ZhengHua Huang, Hao Li, Yue Zhong, Yu Liang, JingWen Zhang, YiGong Zhang, BaoLi Lun, XiangMing Cheng, XiaoLi Yan, ZhiKe Xue, YuXin Xin, ZhiMing Song, YingJie Zhu, Tanmoy Samanta, 2017: Observations of the solar corona during the total solar eclipse on 21 August 2017, Earth and Planetary Physics, 1, 68-71. doi: 10.26464/epp2017010

[16]

KeLiang Zhang, ShiMing Liang, WeiJun Gan, 2019: Crustal strain rates of southeastern Tibetan Plateau derived from GPS measurements and implications to lithospheric deformation of the Shan-Thai terrane, Earth and Planetary Physics, 3, 45-52. doi: 10.26464/epp2019005

[17]

WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033

[18]

JiaShun Hu, LiJun Liu, Quan Zhou, 2018: Reproducing past subduction and mantle flow using high-resolution global convection models, Earth and Planetary Physics, 2, 189-207. doi: 10.26464/epp2018019

[19]

JingZhi Wang, Qi Zhu, XuDong Gu, Song Fu, JianGuang Guo, XiaoXin Zhang, Juan Yi, YingJie Guo, BinBin Ni, Zheng Xiang, 0: An empirical model of the global distribution of plasmaspheric hiss based on Van Allen Probes EMFISIS measurements, Earth and Planetary Physics. doi: 10.26464/epp2020034

[20]

Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Effects of a dipole-like crustal field on solar wind interaction with Mars

ShiBang Li, HaoYu Lu, Jun Cui, YiQun Yu, Christian Mazelle, Yun Li, JinBin Cao