Advanced Search

EPP

地球与行星物理

ISSN  2096-3955

CN  10-1502/P

Citation: Rao, W. L., and Sun, W. K. (2022). Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data. Earth Planet. Phys., 6(3), 228–240. http://doi.org/10.26464/epp2022021

2022, 6(3): 228-240. doi: 10.26464/epp2022021

SOLID EARTH: GEODESY AND GRAVITY

Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data

University of Chinese Academy of Sciences, Beijing 100049, China

Corresponding author: WenKe Sun, sunw@ucas.ac.cn

Received Date: 2021-12-05
Web Publishing Date: 2022-03-11

Water budget closure is a method used to study the balance of basin water storage and the dynamics of relevant hydrological components (e.g., precipitation, evapotranspiration, and runoff). When water budget closure is connected with terrestrial water storage change (TWSC) estimated from Gravity Recovery and Climate Experiment (GRACE) data, variations in basin runoff can be understood comprehensively. In this study, total runoff variations in the Yangtze River Basin (YRB) and its sub-basins are examined in detail based on the water budget closure equation. We compare and combine mainstream precipitation and evapotranspiration models to determine the best estimate of precipitation minus evapotranspiration. In addition, we consider human water consumption, which has been neglected in earlier studies, and discuss its impact. To evaluate the effectiveness and accuracy of the combined hydrological models in estimating subsurface runoff, we collect discharge variations derived from in situ observations in the YRB and its sub-basins and compare these data with the models’ final estimated runoff variations. The estimated runoff variations suggest that runoff over the YRB has been increasing, especially in the lower sub-basins and in the post-monsoon season, and is accompanied by apparent terrestrial water loss.

Key words: runoff; discharge; Yangtze River Basin; water budget closure; GRACE

Adler, R. F., Huffman, G. J., Chang, A., Ferraro, R., Xie, P. P., Janowiak, J., Rudolf, B., Schneider, U., Curtis, S., … Nelkin, E. (2003). The version-2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979–Present). J. Hydrometeorol., 4(6), 1147–1167. https://doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

Adler, R. F., Sapiano, M. R. P., Huffman, G. J., Wang, J. J., Gu, G. J., Bolvin, D., Chiu, L., Schneider, U., Becker, A., … Shin, D. B. (2018). The global precipitation climatology project (GPCP) monthly analysis (New Version 2.3) and a review of 2017 global precipitation. Atmosphere, 9(4), 138. https://doi.org/10.3390/atmos9040138

Anderson, R. G., Lo, M. H., Swenson, S., Famiglietti, J. S., Tang, Q., Skaggs, T. H., Lin, Y. H., and Wu, R. J. (2015). Using satellite-based estimates of evapotranspiration and groundwater changes to determine anthropogenic water fluxes in land surface models. Geosci. Model Dev., 8(10), 3021–3031. https://doi.org/10.5194/gmd-8-3021-2015

Chang, L., and Sun, W. K. (2021). Progress and prospect of sea level changes of global and China nearby seas. Rev. Geophys. Planet. Phys. (in Chinese), 52(3), 266–279. https://doi.org/10.19975/j.dqyxx.2020-028

Chen, J. L., Li, J., Zhang, Z. Z., and Ni, S. N. (2014). Long-term groundwater variations in Northwest India from satellite gravity measurements. Global Planet.Change, 116, 130–138. https://doi.org/10.1016/j.gloplacha.2014.02.007

Chen, J. L., Famigliett, J. S., Scanlon, B. R., and Rodell, M. (2016). Groundwater storage changes: present status from GRACE observations. Surv. Geophys., 37(2), 397–417. https://doi.org/10.1007/s10712-015-9332-4

Chen, J. L., Tapley, B., Rodell, M., Seo, K. W., Wilson, C., Scanlon, B. R., and Pokhrel, Y. (2020). Basin-scale river runoff estimation from GRACE gravity satellites, climate models, and in situ observations: a case study in the Amazon Basin. Water Resour. Res., 56(10), e2020WR028032. https://doi.org/10.1029/2020WR028032

Chen, Y. T., Fok, H. S., Ma, Z. T., and Tenzer, R. (2019). Improved remotely sensed total basin discharge and its seasonal error characterization in the Yangtze River Basin. Sensors, 19(15), 3386. https://doi.org/10.3390/s19153386

Cheng, M., and Ries, J. (2017). The unexpected signal in GRACE estimates of C20. J. Geod., 91(8), 897–914. https://doi.org/10.1007/s00190-016-0995-5

Duan, A. W., and Zhang, J. Y. (2000). Water use efficiency of grain crops in irrigated farmland in China. Trans. Chin. Soc. Agric. Eng. (in Chinese), 16(4), 41–44. https://doi.org/10.3321/j.issn:1002-6819.2000.04.011

Famiglietti, J. S., Ryu, D., Berg, A. A., Rodell, M., and Jackson, T. J. (2008). Field observations of soil moisture variability across scales. Water Resour. Res., 44(1), W01423. https://doi.org/10.1029/2006WR005804

Fang, J., He, M. L., Luan, W., and Jiao, J. S. (2021). Crustal vertical deformation of Amazon Basin derived from GPS and GRACE/GFO data over past two decades. Geod. Geodyn., 12(6), 441–450. https://doi.org/10.1016/j.geog.2021.09.002

Ferreira, V. G., Gong, Z., He, X. F., Zhang, Y. L., and Andam-Akorful, S. A. (2013). Estimating total discharge in the Yangtze River Basin using satellite-based observations. Remote Sens., 5(7), 3415–3430. https://doi.org/10.3390/rs5073415

Gao, H. L., Tang, Q. H., Ferguson, C. R., Wood, E. F., and Lettenmaier, D. P. (2010). Estimating the water budget of major US river basins via remote sensing. Int. J. Remote Sens., 31(14), 3955–3978. https://doi.org/10.1080/01431161.2010.483488

He, J., Yang, K., Tang, W. J., Lu, H., Qin, J., Chen, Y. Y., and Li, X. (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Sci. Data, 7(1), 25. https://doi.org/10.1038/s41597-020-0369-y

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., … Thépaut, J. N. (2020). The ERA5 global reanalysis. Quart. J. Royal Meteor. Soc., 146(730), 1999–2049. https://doi.org/10.1002/qj.3803

Huang, Y., Salama, M. S., Krol, M. S., Van Der Velde, R., Hoekstra, A. Y., Zhou, Y., and Su, Z. (2013). Analysis of long-term terrestrial water storage variations in the Yangtze River basin. Hydrol. Earth Syst. Sci., 17(5), 1985–2000. https://doi.org/10.5194/hess-17-1985-2013

Jing, W. L., Yao, L., Zhao, X. D., Zhang, P. Y., Liu, Y. X. Y., Xia, X. L., Song, J., Yang, J., Li, Y., and Zhou, C. H. (2019). Understanding terrestrial water storage declining trends in the Yellow River Basin. J. Geophys. Res.:Atmos., 124(23), 12963–12984. https://doi.org/10.1029/2019JD031432

Li, Q., Luo, Z. C., Zhong, B., and Zhou, H. (2018). An improved approach for evapotranspiration estimation using water balance equation: case study of Yangtze River Basin. Water, 10(6), 812. https://doi.org/10.3390/w10060812

Liu, H., Yin, J., and Feng, L. (2018). The dynamic changes in the storage of the Danjiangkou reservoir and the influence of the south-north water transfer project. Sci. Rep., 8(1), 8710. https://doi.org/10.1038/s41598-018-26788-5

Long, D., Longuevergne, L., and Scanlon, B. R. (2014). Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res., 50(2), 1131–1151. https://doi.org/10.1002/2013WR014581

Long, D., Yang, Y. T., Wada, Y., Hong, Y., Liang, W., Chen, Y. N., Yong, B., Hou, A. Z., Wei, J. F., and Chen, L. (2015). Deriving scaling factors using a global hydrological model to restore GRACE total water storage changes for China's Yangtze River Basin. Remote Sens. Environ., 168, 177–193. https://doi.org/10.1016/j.rse.2015.07.003

Lv, M. X., Hao, Z. C., Lin, Z. H., Ma, Z. G., Lv, M. Z., and Wang, J. H. (2016). Reservoir operation with feedback in a coupled land surface and hydrologic model: a case study of the Huai River Basin, China. JAWRA J. Amer. Water Resour. Assoc., 52(1), 168–183. https://doi.org/10.1111/1752-1688.12375

Lv, M. X., Ma, Z. G., Yuan, X., Lv, M. Z., Li, M. X., and Zheng, Z. Y. (2017). Water budget closure based on GRACE measurements and reconstructed evapotranspiration using GLDAS and water use data for two large densely-populated mid-latitude basins. J. Hydrol., 547, 585–599. https://doi.org/10.1016/j.jhydrol.2017.02.027

Lv, M. X., Ma, Z. G., Li, M. X., and Zheng, Z. Y. (2019). Quantitative analysis of terrestrial water storage changes under the grain for green program in the Yellow River Basin. J. Geophys. Res.:Atmos., 124(3), 1336–1351. https://doi.org/10.1029/2018JD029113

Lv, M. Z., Yang, Z. L., Xu, Z. F., Dan, L., Lv, M. X., and Zheng, H. (2021). A soil moisture-dependent model to simulate water table depth and proportions of surface and subsurface runoff and its validation at the basin scale. J. Geophys. Res.:Atmos., 126(4), e2020JD033661. https://doi.org/10.1029/2020JD033661

Martens, B., Miralles, D. G., Lievens, H., Van Der Schalie, R., De Jeu, R. A. M., Fernández-Prieto, D., Beck, H. E., Dorigo, W. A., and Verhoest, N. E. C. (2017). GLEAM v3: satellite-based land evaporation and root-zone soil moisture. Geosci. Model Dev., 10(5), 1903–1925. https://doi.org/10.5194/gmd-10-1903-2017

Martin, G. M., Dunstone, N. J., Scaife, A. A., and Bett, P. E. (2020). Predicting June mean rainfall in the middle/lower Yangtze River basin. Adv. Atmos. Sci., 37(1), 29–41. https://doi.org/10.1007/s00376-019-9051-8

Niu, G. Y., Yang, Z. L., Mitchell, K. E., Chen, F., Ek, M. B., Barlage, M., Kumar, A., Manning, K., Niyogi, D., … Xia, Y. L. (2011). The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res.:Atmos., 116(D12), D12109. https://doi.org/10.1029/2010JD015139

Oliveira, P. T. S., Nearing, M. A., Moran, M. S., Goodrich, D. C., Wendland, E., and Gupta, H. V. (2014). Trends in water balance components across the Brazilian Cerrado. Water Resour. Res., 50(9), 7100–7114. https://doi.org/10.1002/2013WR015202

Peltier, W. R., Argus, D. F., and Drummond, R. (2018). Comment on "an assessment of the ICE-6G_C (VM5a) glacial isostatic adjustment model" by Purcell et al. J. Geophys. Res.:Solid Earth, 123(2), 2019–2028. https://doi.org/10.1002/2016JB013844.

Penatti, N. C., De Almeida, T. I. R., Ferreira, L. G., Arantes, A. E., and Coe, M. T. (2015). Satellite-based hydrological dynamics of the world's largest continuous wetland. Remote Sens. Environ., 170, 1–13. https://doi.org/10.1016/j.rse.2015.08.031

Pham, T. T., Mai, T. D., Pham, T. D., Hoang, M. T., Nguyen, M. K., and Pham, T. T. (2016). Industrial water mass balance as a tool for water management in industrial parks. Water Resour. Ind., 13, 14–21. https://doi.org/10.1016/j.wri.2016.04.001

Rana, G., and Katerji, N. (2000). Measurement and estimation of actual evapotranspiration in the field under Mediterranean climate: a review. Eur. J. Agron., 13(2-3), 125–153. https://doi.org/10.1016/S1161-0301(00)00070-8

Rao, W. L., and Sun, W. K. (2021). Moho interface changes beneath the Tibetan Plateau based on GRACE data. J. Geophys. Res.:Solid Earth, 126(2), e2020JB020605.

Rao, W. L., and Sun, W. K. (2022). Uplift of the Tibetan Plateau: how to accurately compute the hydrological load effect. J. Geophys. Res.:Solid Earth, 127(1), e2021JB022475. https://doi.org/10.1029/2021JB022475

Rodell, M., and Famiglietti, J. S. (1999). Detectability of variations in continental water storage from satellite observations of the time dependent gravity field. Water Resour. Res., 35(9), 2705–2723. https://doi.org/10.1029/1999WR900141

Rodell, M., Houser, P. R., Jambor, U., Gottschalck, J., Mitchell, K., Meng, C. J., Arsenault, K., Cosgrove, B., Radakovich, J., … Toll, D. (2004). The global land data assimilation system. Bull. Amer. Meteor. Soc., 85(3), 381–394. https://doi.org/10.1175/BAMS-85-3-381

Shen, Y., Wang, Q. Y., Rao, W. L., and Sun, W. K. (2022). Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China contient. Earth Planet. Phys., 6(1), 96–107. https://doi.org/10.26464/epp2022009

Sichangi, A. W., Wang, L., Yang, K., Chen, D. L., Wang, Z. J., Li, X. P., Zhou, J., Liu, W. B., and Kuria, D. (2016). Estimating continental river basin discharges using multiple remote sensing data sets. Remote Sens. Environ., 179, 36–53. https://doi.org/10.1016/j.rse.2016.03.019

Sinclair, T. R., Tanner, C. B., and Bennett, J. M. (1984). Water-use efficiency in crop production. BioScience, 34(1), 36–40. https://doi.org/10.2307/1309424

Sun, Q. H., Miao, C. Y., Duan, Q. Y., Ashouri, H., Sorooshian, S., and Hsu, K. L. (2018). A review of global precipitation data sets: data sources, estimation, and intercomparisons. Rev. Geophys., 56(1), 79–107. https://doi.org/10.1002/2017RG000574

Sun, Y., Riva, R., and Ditmar, P. (2016). Optimizing estimates of annual variations and trends in geocenter motion and J2 from a combination of GRACE data and geophysical models. J. Geophys. Res.:Solid Earth, 121(11), 8352–8370. https://doi.org/10.1002/2016JB013073

Swenson, S., Chambers, D., and Wahr, J. (2008). Estimating geocenter variations from a combination of GRACE and ocean model output. J. Geophys. Res.:Solid Earth, 113(B8), B08410. https://doi.org/10.1029/2007JB005338

Syed, T. H., Famiglietti, J. S., Chen, J., Rodell, M., Seneviratne, S. I., Viterbo, P., and Wilson, C. R. (2005). Total basin discharge for the Amazon and Mississippi River basins from GRACE and a land-atmosphere water balance. Geophys. Res. Lett., 32(24), L24404. https://doi.org/10.1029/2005GL024851

Syed, T. H., Famiglietti, J. S., and Chambers, D. P. (2009). GRACE-based estimates of terrestrial freshwater discharge from basin to continental scales. J. Hydrometeorol., 10(1), 22–40. https://doi.org/10.1175/2008JHM993.1

Wang, G. J., Jiang, T., Blender, R., and Fraedrich, K. (2008). Yangtze 1/f discharge variability and the interacting river–lake system. J. Hydrol., 351(1-2), 230–237. https://doi.org/10.1016/j.jhydrol.2007.12.016

Wang, H. S., Xiang, L. W., Steffen, H., Wu, P., Jiang, L. M., Shen, Q., Li, Z., and Hayashi, M. (2022). GRACE-based estimates of groundwater variations over North America from 2002 to 2017. Geod. Geodyn., 13(1), 11–23. https://doi.org/10.1016/j.geog.2021.10.003

Wang, Z. M., Nguyen, T., and Westerhoff, P. (2019). Food–energy–water analysis at spatial scales for districts in the Yangtze River Basin (China). Environ. Eng. Sci., 36(7), 789–797. https://doi.org/10.1089/ees.2018.0456

Xing, L. L., Liu, Z. W., Jia, J. G., Wu, S. Q., Chen, Z. S., and Niu, X. W. (2021). Far-field coseismic gravity changes related to the 2015 MW7.8 Nepal (Gorkha) earthquake observed by superconducting gravimeters in mainland China. Earth Planet. Phys., 5(2), 141–148. https://doi.org/10.26464/epp2021018

Xu, X. F., Li, X. L., Wang, X. J., He, C. S., Tian, W., Tian, J., and Yang, L. X. (2020). Estimating daily evapotranspiration in the agricultural-pastoral ecotone in Northwest China: a comparative analysis of the Complementary Relationship, WRF-CLM4.0, and WRF-Noah methods. Sci. Total Environ., 729, 138635. https://doi.org/10.1016/j.scitotenv.2020.138635

Xue, B. L., Wang, L., Li, X. P., Yang, K., Chen, D. L., and Sun, L. T. (2013). Evaluation of evapotranspiration estimates for two river basins on the Tibetan Plateau by a water balance method. J. Hydrol., 492, 290–297. https://doi.org/10.1016/j.jhydrol.2013.04.005

Zhang, D., Zhang, Q., Werner, A. D., and Liu, X. M. (2016). GRACE-based hydrological drought evaluation of the Yangtze River basin, China. J. Hydrometeorol., 17(3), 811–828. https://doi.org/10.1175/JHM-D-15-0084.1

Zhang, J., Van Heyden, J., Bendel, D., and Barthel, R. (2011). Combination of soil-water balance models and water-table fluctuation methods for evaluation and improvement of groundwater recharge calculations. Hydrogeol. J., 19(8), 1487–1502. https://doi.org/10.1007/s10040-011-0772-8

Zhang, L., and Sun, W. K. (2022). Progress and prospect of GRACE Mascon product and its application. Rev. Geophys. Planet. Phys. (in Chinese), 53(1), 35–52. https://doi.org/10.19975/j.dqyxx.2021-033

Zhu, M., Zhang, Z. X., Zhu, B., Kong, R., Zhang, F. Y., Tian, J. X., and Jiang, T. (2020). Population and economic projections in the Yangtze River basin based on shared socioeconomic pathways. Sustainability, 12(10), 4202. https://doi.org/10.3390/su12104202

[1]

HuRong Duan, JunGang Guo, LingKang Chen, JiaShuang Jiao, and HeTing Jian, 2022: Vertical Crustal Deformation Velocity and its Influencing Factors over the Qinghai-Tibet Plateau based on the Satellite Gravity Data, Earth and Planetary Physics. doi: 10.26464/epp2022034

[2]

Xin Zhou, Gabriele Cambiotti, WenKe Sun, Roberto Sabadini, 2018: Co-seismic slip distribution of the 2011 Tohoku (MW 9.0) earthquake inverted from GPS and space-borne gravimetric data, Earth and Planetary Physics, 2, 120-138. doi: 10.26464/epp2018013

[3]

Jie Dong, Gabriele Cambiotti, HanJiang Wen, Roberto Sabadini, WenKe Sun, 2021: Treatment of discontinuities inside Earth models: Effects on computed coseismic deformations, Earth and Planetary Physics, 5, 90-104. doi: 10.26464/epp2021010

[4]

Yue Shen, QiuYu Wang, WeiLong Rao, WenKe Sun, 2022: Spatial distribution characteristics and mechanism of nonhydrological time-variable gravity in China contient, Earth and Planetary Physics, 6, 96-107. doi: 10.26464/epp2022009

[5]

XingLin Lei, ZhiWei Wang, JinRong Su, 2019: Possible link between long-term and short-term water injections and earthquakes in salt mine and shale gas site in Changning, south Sichuan Basin, China, Earth and Planetary Physics, 3, 510-525. doi: 10.26464/epp2019052

[6]

YuZhen Cai, ZhiYong Xiao, ChunYu Ding, Jun Cui, 2020: Fine debris flows formed by the Orientale basin, Earth and Planetary Physics, 4, 212-222. doi: 10.26464/epp2020027

[7]

Jing Li, ZhaoPeng Wu, Tao Li, Xi Zhang, Jun Cui, 2020: The diurnal transport of atmospheric water vapor during major dust storms on Mars based on the Mars Climate Database, version 5.3, Earth and Planetary Physics, 4, 550-564. doi: 10.26464/epp2020062

[8]

YouSheng Li, JiMin Sun, ZhiLiang Zhang, Bai Su, ShengChen Tian, MengMeng Cao, 2020: Paleoclimatic and provenance implications of magnetic parameters from the Miocene sediments in the Subei Basin, Earth and Planetary Physics, 4, 308-316. doi: 10.26464/epp2020030

[9]

Mei Yue, JinYao Gao, ChunFeng Li, Chao Zhu, XinZhi Fan, Guochao Wu, ZhongYan Shen, Han Shi, XiaoXian Cai, YiDong Guo, 2022: Neogene faulting and volcanism in the Victoria Land Basin of the Ross Sea, Antarctica, Earth and Planetary Physics, 6, 248-258. doi: 10.26464/epp2022023

[10]

YuJing Liao, QuanLiang Chen, Xin Zhou, 2019: Seasonal evolution of the effects of the El Niño–Southern Oscillation on lower stratospheric water vapor: Delayed effects in late winter and early spring, Earth and Planetary Physics, 3, 489-500. doi: 10.26464/epp2019050

[11]

ZiQi Zhang, Yuan Gao, 2019: Crustal thicknesses and Poisson's ratios beneath the Chuxiong-Simao Basin in the Southeast Margin of the Tibetan Plateau, Earth and Planetary Physics, 3, 69-84. doi: 10.26464/epp2019008

[12]

Biao Yang, YanBin Wang, Li Zhao, LiMing Yang, ChengNing Sha, 2021: Depth variation of the Conrad discontinuity in the Qaidam Basin, northwestern China, and its crustal dynamic implications, Earth and Planetary Physics, 5, 296-304. doi: 10.26464/epp2021030

[13]

Wen Yang, GuoYi Chen, LingYuan Meng, Yang Zang, HaiJiang Zhang, JunLun Li, 2021: Determination of the local magnitudes of small earthquakes using a dense seismic array in the Changning−Zhaotong Shale Gas Field, Southern Sichuan Basin, Earth and Planetary Physics, 5, 532-546. doi: 10.26464/epp2021026

[14]

Xiao Xiao, Jiang Wang, Jun Huang, Binlong Ye, 2018: A new approach to study terrestrial yardang geomorphology based on high-resolution data acquired by unmanned aerial vehicles (UAVs): A showcase of whaleback yardangs in Qaidam Basin, NW China, Earth and Planetary Physics, 2, 398-405. doi: 10.26464/epp2018037

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)
Catalog

Figures And Tables

Runoff variations in the Yangtze River Basin and sub-basins based on GRACE, hydrological models, and in-situ data

WeiLong Rao, WenKe Sun