Advanced Search



ISSN  2096-3955

CN  10-1502/P

Citation: Luo, T. and Leng, W. (2021). Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab. Earth Planet. Phys., 5(3), 1–6doi: 10.26464/epp2021027

doi: 10.26464/epp2021027


Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab


Laboratory of Seismology and Physics of Earth’s Interior; School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China


Chinese Academy of Sciences Center for Excellence in Comparative Planetology, Beijing 100049, China

Corresponding author: Wei Leng,

Received Date: 2021-01-26
Web Publishing Date: 2021-02-01

The thermal structure of the continental subduction zone can be deduced from high-pressure and ultra-high-pressure rock samples or numerical simulation. However, petrological data indicate that the temperature of subducted continental plates is generally higher than that derived from numerical simulation. In this paper, a two-dimensional kinematic model is used to study the thermal structure of continental subduction zones, with or without a preceding oceanic slab. The results show that the removal of the preceding oceanic slab can effectively increase the slab surface temperature of the continental subduction zone in the early stage of subduction. This can sufficiently explain the difference between the cold thermal structure obtained from previous modeling results and the hot thermal structure obtained from rock sample data.

Key words: thermal structure; continental subduction zone; slab breakoff; numerical model

Davies, J. H., and von Blanckenburg, F. (1995). Slab breakoff: a model of lithosphere detachment and its test in the magmatism and deformation of collisional orogens. Earth Planet. Sci. Lett., 129(1-4), 85–102.

Fernández-García, C., Guillaume, B., and Brun, J. P. (2019). 3D slab breakoff in laboratory experiments. Tectonophysics, 773, 228223.

Gerya, T. V., Stöckhert, B., and Perchuk, A. L. (2002). Exhumation of high-pressure metamorphic rocks in a subduction channel: a numerical simulation. Tectonics, 21(6), 1056.

Grove, T. L., Till, C. B., and Krawczynski, M. J. (2012). The role of H2O in subduction zone magmatism. Ann. Rev. Earth Planet. Sci., 40, 413–439.

Hacker, B. R., Peacock, S. M., Abers, G. A., and Holloway, S. D. (2003). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions?. J. Geophys. Res., 108(B1), 2030.

Kincaid, C., and Sacks, I. S. (1997). Thermal and dynamical evolution of the upper mantle in subduction zones. J. Geophys. Res., 102(B6), 12295–12315.

Kohn, M. J., Castro, A. E., Kerswell, B. C., Ranero, C. R., and Spear, F. S. (2018). Shear heating reconciles thermal models with the metamorphic rock record of subduction. Proc. Natl. Acad. Sci. USA, 115(46), 11706–11711.

Kounoudis, R., Bastow, I. D., Ogden, C. S., Goes, S., Jenkins, J., Grant, B., and Braham, C. (2020). Seismic tomographic imaging of the Eastern Mediterranean mantle: Implications for terminal-stage subduction, the uplift of Anatolia, and the development of the North Anatolian Fault. Geochem. Geophys. Geosyst., 21(7), e2020GC009009.

Leng, W., and Mao, W. (2015). Geodynamic modeling of thermal structure of subduction zones. Sci. China Earth Sci., 58(7), 1070–1083.

Leng, W., and Huang, L. Z. (2018). Progress in numerical modeling of subducting plate dynamics. Sci. China Earth Sci., 61(12), 1761–1774.

McKenzie, D. P. (1969). Speculations on the consequences and causes of plate motions. Geophys. J. Int., 18(1), 1–32.

Molnar, P., and England, P. (1990). Temperatures, heat flux, and frictional stress near major thrust faults. J. Geophys. Res., 95(B4), 4833–4856.

Moresi, V. N., and Solomatov, V. S. (1995). Numerical investigation of 2D convection with extremely large viscosity variations. Phys. Fluids, 7(9), 2154–2162.

Peacock, S. M. (1996). Thermal and petrologic structure of subduction zones. In G. E. Bebout, et al. (Eds.), Subduction: Top to Bottom (pp. 119-133). Washington, DC: American Geophysical Union. https: //

Peacock, S. M., and Wang, K. L. (1999). Seismic consequences of warm versus cool subduction metamorphism: examples from southwest and northeast Japan. Science, 286(5441), 937–939.

Peacock, S. M. (2003). Thermal structure and metamorphic evolution of subducting slabs. In J. Eiler (Ed.), Inside the Subduction Factory (pp. 7-22). Washington, DC: American Geophysical Union.https: //

Penniston-Dorland, S. C., Kohn, M. J., and Manning, C. E. (2015). The global range of subduction zone thermal structures from exhumed blueschists and eclogites: rocks are hotter than models. Earth Planet. Sci. Lett., 428, 243–254.

Pusok, A. E., Kaus, B. J. P., and Popov, A. A. (2018). The effect of rheological approximations in 3-D numerical simulations of subduction and collision. Tectonophysics, 746, 296–311.

Syracuse, E. M., van Keken, P. E., and Abers, G. A. (2010). The global range of subduction zone thermal models. Phys. Earth Planet. Inter., 183(1-2), 73–90.

Turcotte, D. L., and Schubert, G. (2002). Geodynamics (pp. 456, 2nd ed). New York: Cambridge University Press222

van Keken, P. E., Kiefer, B., and Peacock, S. M. (2002). High-resolution models of subduction zones: implications for mineral dehydration reactions and the transport of water into the deep mantle. Geochem. Geophys. Geosyst., 3(10), 2001GC000256.

van Keken, P. E., Currie, C., King, S. D., Behn M. D., Cagnioncle A., He J. H., Katz R. F., Lin S. C., Parmentier E. M., Spiegelman M., et al. (2008). A community benchmark for subduction zone modeling. Phys. Earth Planet. Inter., 171(1-4), 187–197.

van Keken, P. E., Hacker, B. R., Syracuse, E. M., and Abers, G. A. (2011). Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res., 116(B1), B01401.

van Keken, P. E., Wada, I., Abers, G. A., Hacker, B. R., and Wang, K. L. (2018). Mafic high-pressure rocks are preferentially exhumed from warm subduction settings. Geochem. Geophys. Geosyst., 19(9), 2934–2961.

van Keken, P. E., Wada, I., Sime, N., and Abers, G. A. (2019). Thermal structure of the forearc in subduction zones: a comparison of methodologies. Geochem. Geophys. Geosyst., 20(7), 3268–3288.

Zheng, Y. F. (2012). Metamorphic chemical geodynamics in continental subduction zones. Chem. Geol., 328, 5–48.

Zheng, Y. F., and Chen, Y. X. (2016). Continental versus oceanic subduction zones. Natl. Sci. Rev., 3(4), 495–519.


TianYu Zheng, YongHong Duan, WeiWei Xu, YinShuang Ai, 2017: A seismic model for crustal structure in North China Craton, Earth and Planetary Physics, 1, 26-34. doi: 10.26464/epp2017004


Biao Guo, JiuHui Chen, QiYuan Liu, ShunCheng Li, 2019: Crustal structure beneath the Qilian Orogen Zone from multiscale seismic tomography, Earth and Planetary Physics, 3, 232-242. doi: 10.26464/epp2019025


WenAi Hou, Chun-Feng Li, XiaoLi Wan, MingHui Zhao, XueLin Qiu, 2019: Crustal S-wave velocity structure across the northeastern South China Sea continental margin: implications for lithology and mantle exhumation, Earth and Planetary Physics, 3, 314-329. doi: 10.26464/epp2019033


QingHui Cui, WenLan Li, GuoHui Li, MaiNing Ma, XiaoYu Guan, YuanZe Zhou, 2018: Seismic detection of the X-discontinuity beneath the Ryukyu subduction zone from the SdP conversion phase, Earth and Planetary Physics, 2, 208-219. doi: 10.26464/epp2018020


Cheng Li, HuaJian Yao, Yuan Yang, Song Luo, KangDong Wang, KeSong Wan, Jian Wen, Bin Liu, 2020: 3-D shear wave velocity structure in the shallow crust of the Tan-Lu fault zone in Lujiang, Anhui, and adjacent areas, and its tectonic implications, Earth and Planetary Physics, 4, 317-328. doi: 10.26464/epp2020026


ChunHua Jiang, LeHui Wei, GuoBin Yang, Chen Zhou, ZhengYu Zhao, 2020: Numerical simulation of the propagation of electromagnetic waves in ionospheric irregularities, Earth and Planetary Physics, 4, 565-570. doi: 10.26464/epp2020059


Chun-Feng Li, Jian Wang, 2018: Thermal structures of the Pacific lithosphere from magnetic anomaly inversion, Earth and Planetary Physics, 2, 52-66. doi: 10.26464/epp2018005


Pan Yan, ZhiYong Xiao, YiZhen Ma, YiChen Wang, Jiang Pu, 2019: Formation mechanism of the Lidang circular structure in the Guangxi Province, Earth and Planetary Physics, 3, 298-304. doi: 10.26464/epp2019031


Xin Zhang, LiFeng Zhang, 2020: Modeling co-seismic thermal infrared brightness anomalies in petroliferous basins surrounding the North and East of the Qinghai–Tibet Plateau, Earth and Planetary Physics, 4, 296-307. doi: 10.26464/epp2020029


Chi-Fong Wong, Kim-Chiu Chow, Kwing L. Chan, Jing Xiao, Yemeng Wang, 2021: Some features of effective radius and variance of dust particles in numerical simulations of the dust climate on Mars, Earth and Planetary Physics, 5, 11-18. doi: 10.26464/epp2021005


XiaoCheng Guo, YuCheng Zhou, Chi Wang, Ying D. Liu, 2021: Propagation of large-scale solar wind events in the outer heliosphere from a numerical MHD simulation, Earth and Planetary Physics. doi: 10.26464/epp2021024


TianJun Zhou, Bin Wang, YongQiang Yu, YiMin Liu, WeiPeng Zheng, LiJuan Li, Bo Wu, PengFei Lin, Zhun Guo, WenMin Man, Qing Bao, AnMin Duan, HaiLong Liu, XiaoLong Chen, Bian He, JianDong Li, LiWei Zou, XiaoCong Wang, LiXia Zhang, Yong Sun, WenXia Zhang, 2018: The FGOALS climate system model as a modeling tool for supporting climate sciences: An overview, Earth and Planetary Physics, 2, 276-291. doi: 10.26464/epp2018026


Tong Dang, JiuHou Lei, XianKang Dou, WeiXing Wan, 2017: A simulation study of 630 nm and 557.7 nm airglow variations due to dissociative recombination and thermal electrons by high-power HF heating, Earth and Planetary Physics, 1, 44-52. doi: 10.26464/epp2017006


DaLi Kong, KeKe Zhang, 2020: Lower-order zonal gravitational coefficients caused by zonal circulations inside gaseous planets: Convective flows and numerical comparison between modeling approaches, Earth and Planetary Physics, 4, 89-94. doi: 10.26464/epp2020014


Xi Zhang, Peng Wang, Tao Xu, Yun Chen, José Badal, JiWen Teng, 2018: Density structure of the crust in the Emeishan large igneous province revealed by the Lijiang- Guiyang gravity profile, Earth and Planetary Physics, 2, 74-81. doi: 10.26464/epp2018007


LiSheng Xu, Xu Zhang, ChunLai Li, 2018: Which velocity model is more suitable for the 2017 MS7.0 Jiuzhaigou earthquake?, Earth and Planetary Physics, 2, 163-169. doi: 10.26464/epp2018016


Feng Long, GuiXi Yi, SiWei Wang, YuPing Qi, Min Zhao, 2019: Geometry and tectonic deformation of the seismogenic structure for the 8 August 2017 MS 7.0 Jiuzhaigou earthquake sequence, northern Sichuan, China, Earth and Planetary Physics, 3, 253-267. doi: 10.26464/epp2019027


Xu Zhang, Zhen Fu, LiSheng Xu, ChunLai Li, Hong Fu, 2019: The 2018 MS 5.9 Mojiang Earthquake: Source model and intensity based on near-field seismic recordings, Earth and Planetary Physics, 3, 268-281. doi: 10.26464/epp2019028


Zhi Wei, Li Zhao, 2019: Lg-Q model and its implication on high-frequency ground motion for earthquakes in the Sichuan and Yunnan region, Earth and Planetary Physics, 3, 526-536. doi: 10.26464/epp2019054


Jingnan Guo, Robert F. Wimmer-Schweingruber, Mateja Dumbović, Bernd Heber, YuMing Wang, 2020: A new model describing Forbush Decreases at Mars: combining the heliospheric modulation and the atmospheric influence, Earth and Planetary Physics, 4, 62-72. doi: 10.26464/epp2020007

Article Metrics
  • PDF Downloads()
  • Abstract views()
  • HTML views()
  • Cited by(0)

Figures And Tables

Thermal structure of continental subduction zone: high temperature caused by the removal of the preceding oceanic slab

Ting Luo, Wei Leng